Skip to main content

A Kernelized Morphable Model for 3D Brain Tumor Analysis

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10882))

Included in the following conference series:

  • 4925 Accesses

Abstract

Abnormal tissue analysis in brain volumes is a difficult task, due to the shape variability that the brain tumors exhibit between patients. The main problem in these processes is that the common techniques use linear representations of the input data which makes unsuitable to model complex shapes as brain tumors. In this paper, we present a kernelized morphable model (3D-KMM) for brain tumor analysis in which the model variations are captured through nonlinear mappings by using kernel principal component analysis. We learn complex shape variations through a high-dimensional representation of the input data. Then from the trained model, we recover the pre-images from the features vectors and perform a non-rigid matching procedure to fit the modeled tumor to a given brain volume. The results show that by using a kernelized morphable model, the non-rigid properties (i.e., nonlinearities and shape variations) of the abnormal tissues can be learned. Finally, our approach proves to be more accurate than the classic morphable model for shape analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.smir.ch/BRATS/Start2015.

  2. 2.

    We use the implementation available at http://iso2mesh.sourceforge.net/cgi-bin/index.cgi.

  3. 3.

    We set the shape of the training tumors \(\varvec{\varGamma }_{i}\) to have the same size, that means all vertices were adjusted to the smallest one.

References

  1. Sen, M., Rudra, A.K., Chowdhury, A.S., Elnakib, A., El-Baz, A.: Cerebral white matter segmentation using probabilistic graph cut algorithm. Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, pp. 41–67. Springer, New York (2011)

    Chapter  Google Scholar 

  2. Singh, K.K., Singh, A.: A study of image segmentation algorithms for different types of images different types of images. Int. J. Comput. Sci. Issues 7(5), 414–417 (2010)

    Google Scholar 

  3. Li, Y., Jia, F., Qin, J.: Brain tumor segmentation from multimodal magnetic resonance images via sparse representation. Artif. Intell. Med. 73, 1–13 (2016)

    Article  Google Scholar 

  4. Zhan, T., Gu, S., Feng, C., Zhan, Y., Wang, J.: Brain tumor segmentation from multispectral mris using sparse representation classification and markov random field regularization. Int. J. Sign. Process. Image Process. Pattern Recogn. 8(9), 229–238 (2015)

    Google Scholar 

  5. Singh, A., et al.: Review of brain tumor detection from MRI images. In: 3rd International Conference on Computing for Sustainable Global Development (INDIACom), IEEE, pp. 3997–4000 (2016)

    Google Scholar 

  6. Bishop, C.: Neural networks for pattern recognition. Oxford University Press, oxford (1995). Google Scholar

    Google Scholar 

  7. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  8. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194. ACM Press/Addison-Wesley Publishing Co. (1999)

    Google Scholar 

  9. Bishop, C.: Pattern recognition and machine learning (Information Science and Statistics), 1st Edn. 2006. corr. 2nd printing Edn. Springer, New York (2007)

    Google Scholar 

  10. Le, Y.H., Kurkure, U., Kakadiaris, I.A.: PDM-ENLOR: Learning ensemble of local PDM-based regressions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1878–1885 (2013)

    Google Scholar 

  11. Wang, Y., Staib, L.H.: Boundary finding with prior shape and smoothness models. IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 738–743 (2000)

    Article  Google Scholar 

  12. Joshi, S.C., Banerjee, A., Christensen, G.E., Csernansky, J.G., Haller, J.W., Miller, M.I., Wang, L.: Gaussian random fields on sub-manifolds for characterizing brain surfaces. In: Duncan, J., Gindi, G. (eds.) IPMI 1997. LNCS, vol. 1230, pp. 381–386. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63046-5_30

    Chapter  Google Scholar 

  13. Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0020217

    Chapter  Google Scholar 

  14. Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: CVPR, IEEE Computer Society (2007)

    Google Scholar 

  15. Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013)

    Article  Google Scholar 

  16. Nair, P., Cavallaro, A.: 3-D face detection, landmark localization, and registration using a point distribution model. IEEE Trans. Multimed. 11(4), 611–623 (2009)

    Article  Google Scholar 

  17. Kwok, J.Y., Tsang, I.H.: The pre-image problem in kernel methods. IEEE Trans. Neural Netw. 15(6), 1517–1525 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This research is developed under the project “Desarrollo de un sistema de soporte clínico basado en el procesamiento estócasitco para mejorar la resolución espacial de la resonancia magnética estructural y de difusión con aplicación al procedimiento de la ablación de tumores” financed by COLCIENCIAS with code 111074455860. H.F. García is funded by Colciencias under the program: Formación de alto nivel para la ciencia, la tecnología y la innovación - Convocatoria 617 de 2013 with code 111065740687. D. A. Jimenez Sierra is partially funded by the Vicerrectoria de Investigaciones, Innovación y Extensión with project code E6-18-7 and by Maestría en Ingeniería Eléctrica both from the Universidad Tecnológica de Pereira.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Jimenez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jimenez, D.A., García, H.F., Álvarez, A.M., Orozco, Á.A., Holguín, G. (2018). A Kernelized Morphable Model for 3D Brain Tumor Analysis. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics