Skip to main content

Multi-classification of Breast Cancer Histology Images by Using a Fine-Tuning Strategy

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10882))

Included in the following conference series:

Abstract

The adoption of automatic systems to support the diagnosis of breast cancer from histology images analysis is rapidly becoming more widespread. Most of the works in literature focus principally on a two-class problem, namely benign and malignant tumors. However, the development of multi-classification approaches would also be greatly appreciated in order to support the determination of an ideal therapeutic schedule for the treatment of breast cancer. The multi-classification of histology images is particularly challenging due to the broad variability of appearance of the image, the great differences in the spatial arrangement of the histological structures, and the heterogeneity in the color distribution. In this work, a fine-tuning strategy of ResNet, a residual convolutional neural network, is presented to address the problem of multi-classification for breast cancer histology images in normal tissue, benign lesions, in situ carcinomas and invasive carcinomas. We have combined three configurations of ResNet, differing from each other in terms of the number of layers, by using a maximum probability rule to balance out their individual weaknesses during the testing. The proposed approach achieved a remarkable performance on the images provided for the Grand Challenge on Breast Cancer Histology Images (BACH), within the context of the International Conference ICIAR 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Imagenet. http://www.image-net.org/

  2. Bioimaging 2015 (2015). http://www.bioimaging2015.ineb.up.pt/dataset.html

  3. Breast (2017). https://rdm.inesctec.pt/dataset/nis-2017-003

  4. ICIAR 2018 Grand Challenge on Breast Cancer Histology images (BACH) (2018). https://iciar2018-challenge.grand-challenge.org/dataset/

  5. Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., Polónia, A., Campilho, A.: Classification of breast cancer histology images using convolutional neural networks. PloS One 12(6), e0177544 (2017)

    Article  Google Scholar 

  6. Arevalo, J., Cruz-Roa, A., et al.: Histopathology image representation for automatic analysis: A state-of-the-art review. Revista Med. 22(2), 79–91 (2014)

    Article  Google Scholar 

  7. Aswathy, M., Jagannath, M.: Detection of breast cancer on digital histopathology images: present status and future possibilities. Inform. Med. Unlocked 8, 74–79 (2016)

    Article  Google Scholar 

  8. Bayramoglu, N., Kannala, J., Heikkilä, J.: Deep learning for magnification independent breast cancer histopathology image classification. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2440–2445. IEEE (2016)

    Google Scholar 

  9. Das, K., Karri, S.P.K., Roy, A.G., Chatterjee, J., Sheet, D.: Classifying histopathology whole-slides using fusion of decisions from deep convolutional network on a collection of random multi-views at multi-magnification. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 1024–1027. IEEE (2017)

    Google Scholar 

  10. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)

    Google Scholar 

  11. Doyle, S., Agner, S., Madabhushi, A., Feldman, M., Tomaszewski, J.: Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008, pp. 496–499. IEEE (2008)

    Google Scholar 

  12. Han, Z., Wei, B., Zheng, Y., Yin, Y., Li, K., Li, S.: Breast cancer multi-classification from histopathological images with structured deep learning model. Sci. Rep. 7(1), 4172 (2017)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Kumar, R., Srivastava, R., Srivastava, S.: Detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features. J. Med. Eng. 2015, 1–14 (2015)

    Article  Google Scholar 

  15. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  16. Ojansivu, V., Linder, N., Rahtu, E., Pietikäinen, M., Lundin, M., Joensuu, H., Lundin, J.: Automated classification of breast cancer morphology in histopathological images. Diagn. Pathol. 8(1), S29 (2013)

    Google Scholar 

  17. Rahtu, E., Heikkilä, J., Ojansivu, V., Ahonen, T.: Local phase quantization for blur-insensitive image analysis. Image Vis. Comput. 30(8), 501–512 (2012)

    Article  Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans Biomed. Eng. 63(7), 1455–1462 (2016)

    Article  Google Scholar 

  20. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2560–2567. IEEE (2016)

    Google Scholar 

  21. Stewart, B.W., Wild, C.: World Cancer Report 2014, World Health Organization, International Agency for Research on Cancer, vol. 505 (2014)

    Google Scholar 

  22. Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    Article  Google Scholar 

  23. Veta, M., Pluim, J.P., Van Diest, P.J., Viergever, M.A.: Breast cancer histopathology image analysis: a review. IEEE Trans. Biomed. Eng. 61(5), 1400–1411 (2014)

    Article  Google Scholar 

  24. Wei, B., Han, Z., He, X., Yin, Y.: Deep learning model based breast cancer histopathological image classification. In: 2017 IEEE 2nd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), pp. 348–353. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Brancati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brancati, N., Frucci, M., Riccio, D. (2018). Multi-classification of Breast Cancer Histology Images by Using a Fine-Tuning Strategy. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_87

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics