Skip to main content

Abstract

The travelling salesman problem is a well-known problem that can be generalized to the m-travelling salesmen problem with min-max objective. In this problem, each city must be visited by exactly one salesman, among m travelling salesmen. We want to minimize the longest circuit travelled by a salesman. This paper generalizes the Circuit and WeightedCircuit constraints and presents a new constraint that encodes m cycles all starting from the same city and whose lengths are bounded by a variable \(L_{max}\). We propose two filtering algorithms, each based on a relaxation of the problem that uses the structure of the graph and the distances between each city. We show that this new constraint improves the solving time for the m travelling salesmen problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beldiceanu, N., Carlsson, M., Rampon, J.: Global constraint catalog, 2nd edn (revision a). Technical report 03, SICS (2012)

    Google Scholar 

  2. Held, M., Karp, R.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18(6), 1138–1162 (1970)

    Article  MathSciNet  Google Scholar 

  3. Laporte, G., Nobert, Y.: A cutting planes algorithm for the m-salesmen problem. J. Oper. Res. Soc. 31, 1017–1023 (1980)

    Article  MathSciNet  Google Scholar 

  4. França, P.M., Gendreau, M., Laportt, G., Müller, F.M.: The m-traveling salesman problem with minmax objective. Transp. Sci. 29(3), 267–275 (1995)

    Article  Google Scholar 

  5. Necula, R., Breaban, M., Raschip, M.: Tackling the bi-criteria facet of multiple traveling salesman problem with ant colony systems. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 873–880. IEEE (2015)

    Google Scholar 

  6. Narasimha, K.V., Kivelevitch, E., Sharma, B., Kumar, M.: An ant colony optimization technique for solving min–max multi-depot vehicle routing problem. Swarm Evol. Comput. 13, 63–73 (2013)

    Article  Google Scholar 

  7. Somhom, S., Modares, A., Enkawa, T.: Competition-based neural network for the multiple travelling salesmen problem with minmax objective. Comput. Oper. Res. 26(4), 395–407 (1999)

    Article  MathSciNet  Google Scholar 

  8. Ali, A.I., Kennington, J.L.: The asymmetric m-travelling salesmen problem: a duality based branch-and-bound algorithm. Discret. Appl. Math. 13(2–3), 259–276 (1986)

    MATH  Google Scholar 

  9. Gromicho, J., Paixão, J., Bronco, I.: Exact solution of multiple traveling salesman problems. In: Akgül, M., Hamacher, H.W., Tüfekçi, S. (eds.) Combinatorial Optimization, pp. 291–292. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-642-77489-8_27

    Chapter  Google Scholar 

  10. Kara, I., Bektas, T.: Integer linear programming formulations of multiple salesman problems and its variations. Eur. J. Oper. Res. 174(3), 1449–1458 (2006)

    Article  MathSciNet  Google Scholar 

  11. Rao, M.R.: A note on the multiple traveling salesmen problem. Oper. Res. 28(3-part-i), 628–632 (1980)

    Google Scholar 

  12. Jonker, R., Volgenant, T.: An improved transformation of the symmetric multiple traveling salesman problem. Oper. Res. 36(1), 163–167 (1988)

    Article  MathSciNet  Google Scholar 

  13. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2006)

    Article  Google Scholar 

  14. Lauriere, J.L.: A language and a program for stating and solving combinatorial problems. Artif. Intell. 10(1), 29–127 (1978)

    Article  MathSciNet  Google Scholar 

  15. Caseau, Y., Laburthe, F.: Solving small TSPs with constraints. In: Proceedings of the 14th International Conference on Logic Programming (ICLP 1997), pp. 316–330 (1997)

    Google Scholar 

  16. Kaya, L.G., Hooker, J.N.: A filter for the circuit constraint. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 706–710. Springer, Heidelberg (2006). https://doi.org/10.1007/11889205_55

    Chapter  Google Scholar 

  17. Fages, J., Lorca, X.: Improving the asymmetric TSP by considering graph structure. Technical report 1206.3437, arxiv (2012)

    Google Scholar 

  18. Beldiceanu, N., Contejean, E.: Introducing global constraints in chip. Math. Comput. Modell. 20(12), 97–123 (1994)

    Article  Google Scholar 

  19. Benchimol, P., Hoeve, W.J.V., Régin, J.C., Rousseau, L.M., Rueher, M.: Improved filtering for weighted circuit constraints. Constraints 17(3), 205–233 (2012)

    Article  MathSciNet  Google Scholar 

  20. Focacci, F., Lodi, A., Milano, M.: Embedding relaxations in global constraints for solving TSP and TSPTW. Ann. Math. Artif. Intell. 34(4), 291–311 (2002)

    Article  MathSciNet  Google Scholar 

  21. Focacci, F., Lodi, A., Milano, M.: A hybrid exact algorithm for the TSPTW. INFORMS J. Comput. 14(4), 403–417 (2002)

    Article  MathSciNet  Google Scholar 

  22. Pesant, G., Gendreaul, M., Rousseau, J.-M.: GENIUS-CP: a generic single-vehicle routing algorithm. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 420–434. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0017457

    Chapter  Google Scholar 

  23. Tarjan, R.E.: Applications of path compression on balanced trees. J. ACM (JACM) 26(4), 690–715 (1979)

    Article  MathSciNet  Google Scholar 

  24. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. Ann. Hist. Comput. 7(1), 43–57 (1985)

    Article  MathSciNet  Google Scholar 

  25. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

    Article  MathSciNet  Google Scholar 

  26. Chin, F., Houck, D.: Algorithms for updating minimal spanning trees. J. Comput. Syst. Sci. 16(3), 333–344 (1978)

    Article  MathSciNet  Google Scholar 

  27. Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian trees and range minimum queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 341–353. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02927-1_29

    Chapter  MATH  Google Scholar 

  28. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pp. 246–251 (1983)

    Google Scholar 

  29. Necula, R., Breaban, M., Raschip, M.: Performance evaluation of ant colony systems for the single-depot multiple traveling salesman problem. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds.) HAIS 2015. LNCS (LNAI), vol. 9121, pp. 257–268. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19644-2_22

    Chapter  Google Scholar 

  30. Fages, J.G., Prud’Homme, C.: Making the first solution good! In: ICTAI 2017 29th IEEE International Conference on Tools with Artificial Intelligence (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude-Guy Quimper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rioux-Paradis, K., Quimper, CG. (2018). The WeightedCircuitsLmax Constraint. In: van Hoeve, WJ. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2018. Lecture Notes in Computer Science(), vol 10848. Springer, Cham. https://doi.org/10.1007/978-3-319-93031-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93031-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93030-5

  • Online ISBN: 978-3-319-93031-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics