Abstract
This paper presents a local search framework for constructing and improving relaxed decision diagrams (DDs). The framework consists of a set of elementary DD manipulation operations including a redirect operation introduced in this paper and a general algorithmic scheme. We show that the framework can be used to reproduce several standard DD compilation schemes and to create new compilation and improvement strategies. In computational experiments for the 0–1 knapsack problem, the multidimensional knapsack problem and the set covering problem we compare different compilation methods. It turns out that a new strategy based on the local search framework consistently yields better bounds, in many cases far better bounds, for limited-width DDs than previously published heuristic strategies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aarts, E., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization, 1st edn. Wiley, New York (1997)
Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_11
Bergman, D., Cire, A.A.: Theoretical insights and algorithmic tools for decision diagram-based optimization. Constraints 21, 533–556 (2016)
Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Variable ordering for the application of BDDs to the maximum independent set problem. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29828-8_3
Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016)
Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.: Decision Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42849-9
Bergman, D., Cire, A.A.: On finding the optimal BDD relaxation. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 41–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59776-8_4
Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21311-3_5
Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85958-1_30
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Römer, M., Cire, A.A., Rousseau, LM. (2018). A Local Search Framework for Compiling Relaxed Decision Diagrams. In: van Hoeve, WJ. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2018. Lecture Notes in Computer Science(), vol 10848. Springer, Cham. https://doi.org/10.1007/978-3-319-93031-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-93031-2_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93030-5
Online ISBN: 978-3-319-93031-2
eBook Packages: Computer ScienceComputer Science (R0)