Skip to main content

Classifier Risk Estimation Under Limited Labeling Resources

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10937))

Included in the following conference series:

  • 5362 Accesses

Abstract

Evaluating a trained system is an important component of machine learning. Labeling test data for large scale evaluation of a trained model can be extremely time consuming and expensive. In this paper we propose strategies for estimating performance of a classifier using as little labeling resource as possible. Specifically, we assume a labeling budget is given and the goal is to get a good estimate of the classifier performance using the provided labeling budget. We propose strategies to get a precise estimate of classifier accuracy under this restricted labeling budget scenario. We show that these strategies can reduce the variance in estimation of classifier accuracy by a significant amount compared to simple random sampling (over \(\mathbf {65\%}\) in several cases). In terms of labeling resource, the reduction in number of samples required (compared to random sampling) to estimate the classifier accuracy with only \(1\%\) error is high as \(\mathbf {60\%}\) in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pascal large scale learning challenge (2008). largescale.ml.tu-berlin.de

  2. Bennett, P.N., Carvalho, V.R.: Online stratified sampling: evaluating classifiers at web-scale. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1581–1584. ACM (2010)

    Google Scholar 

  3. Cochran, W.G.: Sampling Techniques. Wiley, New York (2007)

    MATH  Google Scholar 

  4. Dalenius, T., Gurney, M.: The problem of optimum stratification. II. Scand. Actuarial J. 1951(1–2), 133–148 (1951)

    Article  MathSciNet  Google Scholar 

  5. Dalenius, T., Hodges Jr., J.L.: Minimum variance stratification. J. Am. Stat. Assoc. 54(285), 88–101 (1959)

    Article  Google Scholar 

  6. Donmez, P., Lebanon, G., Balasubramanian, K.: Unsupervised supervised learning i: estimating classification and regression errors without labels. J. Mach. Learn. Res. 11, 1323–1351 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Druck, G., McCallum, A.: Toward interactive training and evaluation. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 947–956. ACM (2011)

    Google Scholar 

  8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. SSS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  9. Hansen, H., Hurwitz, W., Madow, W.G.: Sample survey methods and theory (1953)

    Google Scholar 

  10. Jaffe, A., Nadler, B., Kluger, Y.: Estimating the accuracies of multiple classifiers without labeled data. arXiv preprint arXiv:1407.7644 (2014)

  11. Katariya, N., Iyer, A., Sarawagi, S.: Active evaluation of classifiers on large datasets. In: 2012 IEEE 12th International Conference on Data Mining (ICDM), pp. 329–338. IEEE (2012)

    Google Scholar 

  12. Keerthi, S., DeCoste, D.: A modified finite Newton method for fast solution of large scale linear SVMs. J. Mach. Learn. Res. 6, 341–361 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Lewis, D., Yang, Y., Rose, T., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)

    Google Scholar 

  14. Platanios, E., Blum, A., Mitchell, T.: Estimating accuracy from unlabeled data (2014)

    Google Scholar 

  15. Sawade, C., Landwehr, N., Bickel, S., Scheffer, T.: Active risk estimation. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 951–958 (2010)

    Google Scholar 

  16. Sethi, V.: A note on optimum stratification of populations for estimating the population means. Aust. J. Stat. 5(1), 20–33 (1963)

    Article  Google Scholar 

  17. Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)

    Article  MathSciNet  Google Scholar 

  18. Singh, R.: Approximately optimum stratification on the auxiliary variable. J. Am. Stat. Assoc. 66(336), 829–833 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Kumar .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 319 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, A., Raj, B. (2018). Classifier Risk Estimation Under Limited Labeling Resources. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10937. Springer, Cham. https://doi.org/10.1007/978-3-319-93034-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93034-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93033-6

  • Online ISBN: 978-3-319-93034-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics