Skip to main content

A Generalization of Recurrent Neural Networks for Graph Embedding

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10938))

Included in the following conference series:

Abstract

Due to the ubiquity of graphs, machine learning on graphs facilitates many AI systems. In order to incorporate the rich information of graphs into machine learning models, graph embedding has been developed, which seeks to preserve the graphs into low dimensional embeddings. Recently, researchers try to conduct graph embedding via generalizing neural networks on graphs. However, most existing approaches focus on node embedding, ignoring the heterogeneity of edges. Besides, the similarity relationship among random walk sequences has been rarely discussed. In this paper, we propose a generalization of Recurrent Neural Networks on Graphs (G-RNN) for graph embedding. More specifically, first we propose to utilize edge embedding and node embedding jointly to preserve graphs, which is of great significance in multi-relational graphs with heterogeneous edges. Then we propose the definition of subgraph level high-order proximity to preserve the inter-sequence proximity into the embeddings. To verify the generalization of G-RNN, we apply it to the embedding of knowledge graph, a typical multi-relational graph. Empirically we evaluate the resulting embeddings on the tasks of link prediction and node classification. The results show that the embeddings learned by G-RNN are powerful on both tasks, producing better performance than the baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.: Distributed large-scale natural graph factorization. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 37–48. ACM (2013)

    Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, pp. 585–591 (2002)

    Google Scholar 

  3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250. ACM (2008)

    Google Scholar 

  4. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy function for learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  6. Bordes, A., Weston, J., Collobert, R., Bengio, Y., et al.: Learning structured embeddings of knowledge bases. In: AAAI, vol. 6, p. 6 (2011)

    Google Scholar 

  7. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167. ACM (2008)

    Google Scholar 

  8. Das, R., Neelakantan, A., Belanger, D., McCallum, A.: Chains of reasoning over entities, relations, and text using recurrent neural networks. arXiv preprint arXiv:1607.01426 (2016)

  9. Garcia-Duran, A., Bordes, A., Usunier, N.: Composing relationships with translations. Ph.D. thesis, CNRS, Heudiasyc (2015)

    Google Scholar 

  10. Gardner, M., Mitchell, T.M.: Efficient and expressive knowledge base completion using subgraph feature extraction. In: EMNLP, pp. 1488–1498 (2015)

    Google Scholar 

  11. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. arXiv preprint arXiv:1705.02801 (2017)

  12. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  13. Jenatton, R., Roux, N.L., Bordes, A., Obozinski, G.R.: A latent factor model for highly multi-relational data. In: Advances in Neural Information Processing Systems, pp. 3167–3175 (2012)

    Google Scholar 

  14. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a large scale knowledge base. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 529–539. Association for Computational Linguistics (2011)

    Google Scholar 

  16. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. arXiv preprint arXiv:1506.00379 (2015)

  17. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

    Google Scholar 

  18. Neelakantan, A., Chang, M.W.: Inferring missing entity type instances for knowledge base completion: new dataset and methods. arXiv preprint arXiv:1504.06658 (2015)

  19. Neelakantan, A., Roth, B., McCallum, A.: Compositional vector space models for knowledge base inference. In: 2015 AAAI Spring Symposium Series (2015)

    Google Scholar 

  20. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 809–816 (2011)

    Google Scholar 

  21. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  22. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30

    Chapter  Google Scholar 

  23. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  24. Schlichtkrull, M., Kipf, T.N., Bloem, P., Berg, R.v.d., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. arXiv preprint arXiv:1703.06103 (2017)

  25. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  26. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  27. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

    Google Scholar 

  28. Xie, R., Liu, Z., Chua, T.s., Luan, H., Sun, M.: Image-embodied knowledge representation learning. arXiv preprint arXiv:1609.07028 (2016)

  29. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: AAAI, pp. 2659–2665 (2016)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China, 61602048, 61520106007, BUPT-SICE Excellent Graduate Students Innovation Fund, 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, X., Zhang, C., Guo, C., Ji, Y. (2018). A Generalization of Recurrent Neural Networks for Graph Embedding. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10938. Springer, Cham. https://doi.org/10.1007/978-3-319-93037-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93037-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93036-7

  • Online ISBN: 978-3-319-93037-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics