Skip to main content

A CRF-Based Stacking Model with Meta-features for Named Entity Recognition

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10938))

Included in the following conference series:

Abstract

Named Entity Recognition (NER) is a challenging task in Natural Language Processing. Recently, machine learning based methods are widely used for the NER task and outperform traditional handcrafted rule based methods. As an alternative way to handle the NER task, stacking, which combines a set of classifiers into one classifier, has not been well explored for the NER task. In this paper, we propose a stacking model for the NER task. We extend the original stacking model from both model and feature aspects. We use Conditional Random Fields as the level-1 classifier, and we also apply meta-features from global aspect and local aspect of the level-0 classifiers and tokens in our model. In the experiments, our model achieves the state-of-the-art performance on the CoNLL 2003 Shared task.

This work was partially supported by D2DCRC DC25002 and DC25003, and ARC DP 180103411.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://spacy.io/.

  2. 2.

    https://github.com/mit-nlp/MITIE.

References

  1. Bansal, M., Klein, D.: Coreference semantics from web features. In: ACL (1), pp. 389–398. The Association for Computer Linguistics (2012)

    Google Scholar 

  2. Breiman, L.: Stacked regressions. Mach. Learn. 24(1), 49–64 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Chen, H., Zhang, Y., Liu, Q.: Neural network for heterogeneous annotations. In: EMNLP, pp. 731–741. The Association for Computational Linguistics (2016)

    Google Scholar 

  4. Chiu, J.P.C., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs. TACL 4, 357–370 (2016)

    Google Scholar 

  5. Dernoncourt, F., Lee, J.Y., Szolovits, P.: NeuroNER: an easy-to-use program for named-entity recognition based on neural networks. In: EMNLP (System Demonstrations), pp. 97–102. Association for Computational Linguistics (2017)

    Google Scholar 

  6. Ekbal, A., Saha, S.: Stacked ensemble coupled with feature selection for biomedical entity extraction. Knowl.-Based Syst. 46, 22–32 (2013)

    Article  Google Scholar 

  7. Finkel, J.R., Grenager, T., Manning, C.D.: Incorporating non-local information into information extraction systems by Gibbs sampling. In: ACL (2005)

    Google Scholar 

  8. Florian, R., Ittycheriah, A., Jing, H., Zhang, T.: Named entity recognition through classifier combination. In: CoNLL, pp. 168–171. ACL (2003)

    Google Scholar 

  9. Guo, J., Che, W., Wang, H., Liu, T.: Revisiting embedding features for simple semi-supervised learning. In: EMNLP, pp. 110–120. ACL (2014)

    Google Scholar 

  10. Krishnan, V., Manning, C.D.: An effective two-stage model for exploiting non-local dependencies in named entity recognition. In: ACL (2006)

    Google Scholar 

  11. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. In: HLT-NAACL (2016)

    Google Scholar 

  12. Ma, X., Hovy, E.H.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In: ACL (1). The Association for Computer Linguistics (2016)

    Google Scholar 

  13. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: ACL (System Demonstrations), pp. 55–60. The Association for Computer Linguistics (2014)

    Google Scholar 

  14. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS (2013)

    Google Scholar 

  15. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP, pp. 1532–1543. ACL (2014)

    Google Scholar 

  16. Peters, M.E., Ammar, W., Bhagavatula, C., Power, R.: Semi-supervised sequence tagging with bidirectional language models. In: ACL (1) (2017)

    Google Scholar 

  17. Rajani, N.F., Mooney, R.J.: Stacking with auxiliary features. In: IJCAI (2017)

    Google Scholar 

  18. Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recognition. In: CoNLL, pp. 147–155. ACL (2009)

    Google Scholar 

  19. Sang, E.F.T.K., Meulder, F.D.: Introduction to the CoNLL-2003 shared task: language-independent named entity recognition (2003)

    Google Scholar 

  20. Sculley, D.: Combined regression and ranking. In: KDD, pp. 979–988. ACM (2010)

    Google Scholar 

  21. Sill, J., Takács, G., Mackey, L.W., Lin, D.: Feature-weighted linear stacking. CoRR abs/0911.0460 (2009)

    Google Scholar 

  22. Sun, W., Peng, X., Wan, X.: Capturing long-distance dependencies in sequence models: a case study of Chinese part-of-speech tagging. In: IJCNLP, pp. 180–188. Asian Federation of Natural Language Processing/ACL (2013)

    Google Scholar 

  23. Tsukamoto, K., Mitsuishi, Y., Sassano, M.: Learning with multiple stacking for named entity recognition. In: CoNLL. ACL (2002)

    Google Scholar 

  24. Wang, H., Zhao, T., Tan, H., Zhang, S.: Biomedical named entity recognition based on classifiers ensemble. IJCSA 5(2), 1–11 (2008)

    Google Scholar 

  25. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)

    Article  Google Scholar 

  26. Wu, D., Ngai, G., Carpuat, M.: A stacked, voted, stacked model for named entity recognition. In: CoNLL, pp. 200–203. ACL (2003)

    Google Scholar 

  27. Zenko, B., Dzeroski, S.: Stacking with an extended set of meta-level attributes and MLR. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 493–504. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36755-1_41

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Sun, Y., Wang, W., Zhou, X. (2018). A CRF-Based Stacking Model with Meta-features for Named Entity Recognition. In: Phung, D., Tseng, V., Webb, G., Ho, B., Ganji, M., Rashidi, L. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2018. Lecture Notes in Computer Science(), vol 10938. Springer, Cham. https://doi.org/10.1007/978-3-319-93037-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93037-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93036-7

  • Online ISBN: 978-3-319-93037-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics