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Abstract. A basic task in the design of a robotic production cell is the
relative placement of robot and workpiece. The fundamental require-
ment is that the robot can reach all process positions; only then one can
think further optimization. Therefore an algorithm that automatically
places an object into the workspace is very desirable. However many it-
erative optimzation algorithms cannot guarantee that all intermediate
steps are reachable, resulting in complicated procedures. We present a
novel approach which extends a robot by a virtual prismatic joint - which
measures the distance to the workspace - such that any TCP frames are
reachable. This allows higher order nonlinear programming algorithms to
be used for placement of an object alone as well as the optimal placement
under some differentiable criterion.

Keywords: optimization, virtual joint, inverse kinematics, nonsmooth
optimization, workspace, Cartesian tasks

1 Problem Statement

We consider the following task: A robot should unload a storage box with a chess-
board like structure containing Bx × By identical workpieces at positions Pkl,
k = 1, . . . , Bx, l = 1, . . . , By, counted in the coordinate directions of the frame
C ∈ IF (where IF denotes the set of all frames IR3 × SO(3)) associated with the
box at distances Dx and Dy. Think of test-tubes in medicine or small parts in
general production. The cell setup is considered fixed, so only the placement of
the box in the cell can be chosen, e.g. because a new order type.

Usually a pick-and-place operation is programmed at one corner only, the
other position commands are computed from this corner position and the indices
and distances. However it is difficult for the user to assess whether all positions
are reachable because of nonlinearity and axis limits. Testing the corners is
a heuristic that works in many cases but there is no guarantee, so one has
to run time-consuming tests. When the process needs to work on an object
from different sides or with different orientations the situation is even more
complicated. So the user would like to have an algorithm that determines a
feasible object frame C near some initial guess C0, maybe additionally optimizing
one of the many known manipulability measures, see [8], [12].
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It is easy to check in a program whether a given frame C leads to reachable
positions or not but it is difficult for a nonlinear optimizer to determine a di-
rection that leads to a ”more feasible” situation: Feasibility is a binary decision;
the backward transformation will usually issue an error only, and abort.

Our idea is to introduce a virtual joint as a slack variable in terms of nonlinear
programming (see [9]) into the optimization problem that measures the distance
of a position from feasibility. This variable therefore has an intuitive geometric
interpretation. We can also interpret the virtual axis as a homotopy variable
similar to [4] which gives an ”easy” solution for large values. Our slack variable
is not generated by the standard procedure replacing an inequality constraint
g(x) ≤ 0 by the equality g(x) + z = 0, with the sign constraing z ≥ 0.

Our approach has some similarity to the introduction of virtual axes for
singularity avoidance in [10] or [7]. However we do not introduce a rotational joint
to reduce velocities near singularities but rather use a prismatic joint to enlargen
the mathematical workspace in the optimization process. In combination with a
smooting operation we can use standard optimization algorithms which require
differentiability of order 1 like all algorithms based on gradient descent, or order
2 like Sequential Quadratic Programming (SQP), cf. [9]. Our approach is not
related at all to voxelization of the workspace like in [11] and other algorithms
aiming at collision free planning.

2 Virtual Axis Approach

For ease of exposition we choose a 6R robot resembling the well known Puma
560 but with more zeros in the parameters. We could extend all formulae to
similar 6R real industrial robots. We use the DH convention

Rz(qi) · Tz(di) · Tx(ai) · Rx(αi) =: Rz(qi) ·Bi =: Ai(qi)

to get the wrist centre point (WCP) and tool centre point (TCP)

WCP(q) = A1(q1) ·A2(q2) ·A3(q3) ·A4(q4) ·A5(q5) ·A6(q6)

TCP(q) = WCP(q) · TOOL

expressed relative to the world coordinate system chosen as the axis 1 coordinate
system. Note that a6 = d6 = 0 in our case so the DH chain ends in the WCP as the
essential point for the backward transform. Figure 1 shows the robot data and the
reference position. We use l23 = 315, l35 = 365 and a tool with Tz(tz), tz = 100,
pointing in direction z6 from the flange. Lengths are measured in [mm], angles
in [rad]. Note that joint 3 is pointing upward for q = 0, so the stretched position
corresponds to q3 = −π2 . We assume joint limits −π ≤ qmin,i ≤ qi ≤ qmax,i ≤ π,
i = 1, . . . 6. As usual, this type of robots has up to 8 discrete solutions of the
backward transform for non-singular positions. We identify these 8 configurations
with an integer s ∈ {0, . . . , 7}.

Infeasibility of the backward transform for a given frame F and configuration
s may arise from two reasons with different severity: First, the WCP may be to
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i θi di ai αi type

1 q1 0 0 π
2

R
2 q2 0 l23 0 R
3 q3 0 0 −π

2
R

4 q4 l35 0 π
2

R
5 q5 0 0 −π

2
R

6 q6 0 0 0 R

Fig. 1. DH parameters and and reference position q = 0 for original robots

far from the robot such that the triangle construction for q3 fails. There is no
remedy in this case. Second, even if axis values q exist such that TCP(q) = F ,
these might violate the joint limits: qi 6∈ [ai, bi] for some i. This is no obstacle
during the optimization process, only for a solution. So the second problem can
be fixed by dropping the joint limits and allowing qi ∈ (−π, π], i = 1, . . . , 6. We
describe this difference by a physical and a mathematical workspaceWP andWM

which are the WCP frames under the two joint restrictions under consideration:

WP = WCP

(
6∏
i=1

[qmin,i, qmax,i]

)
, WM = WCP

(
(−π, π]6

)
We have WP ⊆ WM and WP 6= WM in general but WM is still a bounded set,
which is the first problem.

In order to use optimization algorithms which may leave the feasible set
WM , our goal is to define a virtual robot which has a solution for the backward
transform for any frame F ∈ IF and any configuration s. So we associate to our
original robot a virtual robot with an additional virtual prismatic joint between
joints 3 and 4, which has no joint limits. Any WCP in IR3 is reachable then.
The variable of the virtual joint will be denoted v, the other joints keep their
names giving a combined joint variable q̃ = (q1, q2, q3, v, q4, q5, q6) ∈ IR7. DH
parameters of the virtual robot are shown in Figure 2.

Sufficient conditions for our approach are stated as two assumptions:

Assumption 1 - Reachability of IR3: The mapping of the original joints
and the virtual joint to the WCP position is surjective onto IR3.

Assumption 2 - Reachability of SO(3) Joints 4,5,6 form a central wrist
parametrizing all of SO(3), i.e. the mapping (−π, π]3 → SO(3), (q4, q5, q6) 7→
Rz(q4) ·B4 · Rz(q5) ·B5 · Rz(q6) is surjective.

In our case Assumption 1 is satisfied because for any fixed q3 value the virtual
joint generates an infinite line with the WCP, the second joint rotates the line
through a plane, the first joint rotates the plane through all IR3. Central wrists
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i θi di ai αi type

1 q̃1 0 0 π
2

R
2 q̃2 0 l23 0 R
3 q̃3 0 0 −π

2
R

4 0 v 0 0 P
5 q̃4 l35 0 π

2
R

6 q̃5 0 0 −π
2

R
7 q̃6 0 0 0 R

Fig. 2. DH parameters and reference position q̃ = (0, 0, 0, 150, 0, 0, 0) for virtual robot

satisfying Assumption 2 – for unbounded joint variables – are the most common
choice in industry. Assumption 2 also guarantees an 8-solution kinematics. Using
the notation WCPv to distinguish the forward transform of the virtual robot we
denote

WV = WCPv
(
(−π, π]3 × IR× (−π, π]3]

)
.

Under our assumptions we get WV = IF. We call such a robot a dextrous robot
because the dextrous workspace in IR3 (points reachable with all orientations,
see [2]) and reachable workspace (points reachable with at least one orientation)
coincide, and are all of IR3.

3 Backward Transform with Redundancy Resolution

However we have introduced redundancy in our kinematics so we have to define a
backward transform giving unique results. The virtual robot backward transform
sets the virtual joint to the smallest absolute value such that a solution exists.
In our case this is the distance between the WCP position and WM which is
a hollow sphere for our robot so calculations are simple. Algorithm 1 uses the
backward transform of the original robot: Note that both l23 > l35 and l23 < l35
lead to an empty interior, but l23 < l35 results in negative v values. Also note
that for our robot the stretched position for axis 3 is q3 = ±π2 , not 0 as in most
industrial robots. This stretched position is used for all WCP positions outside
WM .

For robots other than our simple one the computation of q1, as well as the
definition of the stretched position and the computation of v have to be adapted.

4 Smoothness properties

The dexterity of the virtual robot makes all TCP frames feasible. Also the joint
values q̃ depend continuously on the TCP frame, if we keep the configuration
fixed and avoid singularities or the original robot. Inside WM continuity is clear
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Algorithm 1 virtual robot backward transform

Input: WCP frame F parametrized by P = [x, y, z] ∈ IR3, Q ∈ SO(3)
Input: configuration coded as s ∈ {0, . . . , 7}
Output: virtual robot axes q̃ ∈ (−π, π]3 × IR × (−π, π]3] with WCP(q̃) = F where q̃

corresponds to configuration s
if solution q ∈ (−π, π]6 of original backward transform exists then

return essentially this solution as q̃ = (q1, q2, q3, 0, q4, q5, q6)
else

compute q1 using the original backward transform: q1 = atan2(y, x)
d := ||P ||2, distance of WCP from robot base
if P is outside of the hollow sphere, d > l23 + l35 then
v := d− l23 − l35
put joints 2 and 3 in stretched position q2 := atan2(z, r), q3 := −π

2

else
P is in the empty interior of the hollow sphere, d < |l23 − l35|
v := d− l23 + l35
put joints 2 and 3 in stretched position q2 := atan2(z, r), q3 := +π

2

end if
end if

from the usual backward transformation formulae. When the WCP reaches the
boundary of WM the triangles for the elbow-up and elbow-down configuration
degenerate to a line and coincide, hence q3 → −π2 which is the same value as
when approaching from outside. Also q2 = atan2(z, r) depends continuously on
the wrist centre point. However the dependence is not differentiable: When the
wrist centre point enters WM from outside the solution for q3 applies the cosine
theorem to get c = cos(ϕ) near φ = π. Computing ϕ(c) = atan2(±

√
1− c2, c) we

get an infinite slope at c = 1, see Figure 3. This non-differentiability can affect
all other axes.

Fig. 3. Backward transform and smoothing

In order to get C2 behaviour of all angles we modify ϕ(c) on some interval
[1 − ε, 1] with a polynomial of degree 5 with C2 transition at c = 1 − ε and
first and second derivative 0 at c = 1, see the red graph in Figure 3, right.
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This is a basic idea in nonsmooth optimization [1]. Of course this distorts the
backward transform and one has to check whether smoothing affects the optimal
solution but the hope is that the optimum is sufficiently inside the workspace,
and smoothing is only a temporary help for the optimization algorithm.

Figure 4 shows this behaviour for a motion of the virtual robot TCP from L0

along the x axis to L1 in height z = 215 with constant orientation Q with

L0 =

500
0

215

 , L1 =

1300
0

215

 , Q =

−1 0 0
0 1 0
0 0 −1


in the elbow-up configuration such that the tool is pointing downwards. The
WCP crosses the boundary ∂WM at

∂x =
√

(l23 + l35)2 − (215 + tz)2 =
√

6802 − 3152 ≈ 602.6.

Axes q1, q4, q6 do not move. All joints are continuous indeed with infinite slope
of q2, q3, q5 at ∂x. The left picture shows the axis values without smoothing, the
right a zoom into the q3 behaviour without and with smoothing. The virtual
axis remains at v = 0 in WM , then v grows linearly. So the virtual joint v(x)
is also non-differentiable at ∂x but has essentially the same behaviour like x 7→
max{0, x} at x = 0. Forming the square x 7→ (max{0, x})2 creates a C1 function,
we will use this trick in our objective function.

Fig. 4. Joint values for motion through workspace boundary

5 Formulation of the Optimization Problem

We assume that poses must be reached with the same configuration; this is quite
usual for Cartesian task. We parametrize the corner frame as C = Trans(x, y, z) ·
Rz(α) · Ry(β) · Rx(γ). These parameters or a subset thereof constitute our op-
timization variables. Denoting q̃(k,l) = q̃(k,l)(C) = q̃(k,l)(x, y, z, α, β, γ) the joint
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values obtained by the virtual robot backward transform for grid position (k, l)

in the box, q
(k,l)
i and v(k,l) the original and virtual joints, we may optimize

min
x,y,z,α,β,γ

Bx∑
k=1

By∑
l=1

(v(k,l))2

under qmin,i ≤ q(k,l)i ≤ qmax,i

i = 1, . . . , 6, k = 1, . . . , Bx, l = 1, . . . , Bx

We can also add constraints on the frame parameters (x, y, z, α, β, γ). The square
in the objective function makes the objective function C1. To make advantage
of this however we must use the C2 smoothing of the backward transform at
the workspace boundary so that the constraints are C2 as well. With |v(k,l)|3 we
could even obtain a C3 objective function.

Adding some manipulability criterion from [12] or [8] to the objective function
can optimize feasibility and manipulability in combination. However one has to
use appropriate weighting because in extreme cases the optimizer might tolerate
some infeasible points in exchange for high manipulability at other points.

6 Numerical Results

We have tested our optimization procedure with the solvers implemented in
the MATLAB fmincon command. We obtained optimal solutions both with the
default interior point algorithm and the SQP algorithms. However, in many
cases the SQP algorithm required only 10 iterations, about half the iterations of
the interior point algorithm. Computation time was below 10 sec on a standard
laptop with Bx ·By = 5·6 = 30 grid point in the box. Figure 5 shows some typical
run where a box is drawn from far outside the workspace (red) to the interior
(blue). The results were almost independent from differentiability properties.
The interpretation is: Even when crossing the critical workspace boundary the
majority of grid points is away from the vertical slope, dominating the numerical
derivatives. When sufficiently inside the workspace the algorithm hardly ever
enters the infeasible region again.

We have also tested the algorithm with success for a more complicated ge-
ometry: The robot makes the moves for the popular board game ”Settlers of
Catan” with real tokens on a hexagonal structure on a playfield simulated on
a screen, see [5]. However some manual intervention is necessary as the robot
cannot reach all positions with the same configuration.

7 Conclusions

The approach presented in this contribution opens a way to non-interior-point
optimization algorithms for the most common class of industrial 6R robots.
Obviously the approach can also be used for the placement of a robot in a fixed
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Fig. 5. Optimization results and demonstrator setup

work cell; we only need to consider the robot’s base coordinate system as the
variable. Furthermore it seems promising to use the idea for the optimization of
redundant tasks like in [6] or redundant robots and to compare the results.

New algorithms for non-differentiable problems [3] should be investigated in
comparision to higher order approaches, including estimates for the convergence
of the solution of the smoothed problem to the original problem’s solution.
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