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Line-Symmetric Motion GeneratorsI

Yuanqing Wu∗ and Marco Carricato

University of Bologna, Bologna 40136, Italy

Abstract

When a rigid body is axially reflected through a moving line, its image un-
dergoes a so-called line-symmetric motion. The space comprising all possible
line-symmetric motions that share a common initial line is a four-dimensional
submanifold, denoted M4, in the special Euclidean group SE(3). Recently, we
showed that M4 may be used to characterize motions of a line-symmetric body
that are free of self-spin and sliding, thus lending itself to applications such as re-
mote center of motion devices for minimal invasive surgery and haptic interfaces.
Aiming at designing robot mechanisms for these applications, we present in this
paper a systematic enumeration of line-symmetric motion generators (LSMGs),
i.e., robot mechanisms that generate the line-symmetric motion manifold M4,
following a procedure based on symmetric space theory. LSMGs present a ubiq-
uitous line symmetry of their joint axes, thus offering a new understanding of
the line-symmetric motions.

Keywords: Line-symmetric motion, symmetric space, type synthesis,
line-symmetric motion generator
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Nomenclature

`, `0, `(µ), . . . lines represented by unit dual vectors
LSMG line-symmetric motion generator
ICPM interconnected parallel mechanism
SE(3) special Euclidean group
se(3) Lie algebra of SE(3)
se(3)∗ dual space of se(3) (wrench space)
g,h, . . . elements of SE(3)
ξ,η, . . . twist vectors in se(3)
ζ, ζi, . . . wrench vectors in se(3)∗

[ξ1, ξ2] commutator of ξ1, ξ2 ∈ se(3)
sg:SE(3)→SE(3) inversion symmetry map associated with a point g ∈ SE(3)

RPn n-dimensional real projective space
Qs Study quadric

[a0:a1:a2:a3:b0:b1:b2:b3] Study parameters
M4 line-symmetric motion manifold
m4 Lie-triple subsystem (LTS) of M4

h4 commutator algebra of m4

TgM4 (right-trivialized) tangent space of M4 at g
1, i, j,k basis elements of the quaternion algebra

ε dual number: ε2 = 0
Ad(g) Adjoint transformation by g ∈ SE(3)

eξ quaternion exponential of ξ ∈ se(3)
L directed line space

(ξ+, ξ−) symmetric twist pair (SP) of m4

(ξ+
1 ,...,ξ

+
4 ,ξ
−
4 ,...,ξ

−
1 ) symmetric twist chain (SC) of m4

M−,M−
i , . . . distal half of a m4-SC

M+,M+
i , . . . proximal half of a m4-SC

S−, S−i , . . . twist subspace of M−,M−
i , . . .

(S)⊥ reciprocal wrench subspace of a twist subspace S

1. Introduction

When a rigid body is axially reflected through a moving line, its image
undergoes a so-called line-symmetric motion. In other words, a line-symmetric
motion is a one-parameter motion generated by half-turns of the reference body
about a line ` undergoing a one-parameter motion [1], as illustrated in Fig. 1. A
line-symmetric motion is uniquely determined by the basic surface [2, Ch. 9.7]
swept out by `(µ), µ ∈ R+. Historically, line-symmetric motions were probably
first studied by Krames [3] and are known as a rich source of special motions,
such as the vertical Darboux motion, the Bricard motion, and the Bennett
motion, and were extensively studied by using both basic surfaces and axodes [2,
1]. Line-symmetric motions found applications in characterizing self-motions of
Griffis-Duffy type parallel manipulators [4] and also point-symmetric hexapods
[5].

Other studies on line-symmetric motions focus on the structure and prop-
erties of the space of all line-symmetric motions that share a common initial
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Figure 1: Line-symmetric motion about a moving line `(µ) parameterized by µ ∈ R+. The
half-turned image B0 of frame A about `0 serves as the reference frame. Green and red arrows
represent, respectively, screw axes of T1M4 = m4 and TgjM4 = Ad(g

1/2

j )m4.

line `0 [1, 6, 7]. In particular, we recently proved that this space, henceforth
denoted M4, is a four-dimensional submanifold of the rigid displacement group
(or special Euclidean group) SE(3), and is a symmetric subspace [6]. More pre-
cisely, as a symmetric space, SE(3) is a differentiable manifold that can be
isometrically point-reflected onto itself over any point on the manifold [8]. The
point-reflection map or inversion symmetry at a point g ∈ SE(3), denoted sg, is
defined as sg(h) = gh−1g,∀h ∈ SE(3). A symmetric subspace is a submanifold
that is closed under inversion symmetry. As we have shown in [6] and shall
recall in the next section, the fact that M4 is a symmetric subspace gives rise
to many important properties that will be useful for the particular application
studied in this paper.

In this paper, we focus on the mechanism synthesis problem, namely, on the
synthesis of 4-DoF mechanisms capable of generating arbitrary line-symmetric
motions, or in other words, mechanisms whose motion manifolds are open sub-
manifolds of M4. As far as we are aware, no such mechanisms exist in the
literature. Therefore, this paper probably introduces for the first time a class of
line-symmetric motion generators (LSMGs). As we have demonstrated in Fig. 1
and shall elaborate in Sect. 2.3, LSMGs can move a line-symmetric object from
an initial to a goal configuration by screwing along the common perpendicular
of the initial and the goal line, without incurring self spin or sliding about and
along its own axis. This kind of motions has apparent applications in robotic
motion planning and design for line-symmetric manipulation where only the
shape of the line-symmetric object is of concern.

The paper is organized as follows. Sect. 2 gives a brief review of the motion
manifold M4 and discusses its application in characterizing motion of objects
with line symmetry. Sect. 3 proposes a special class of redundant kinematic
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chains, called symmetric chains, that may generate M4 under a symmetric move-
ment condition. Sect. 4 implements the symmetric chains in the synthesis of a
class of LSMGs with both in-parallel kinematic structure and interconnecting
joints, which we refer to as interconnected parallel mechanisms. Finally, we
conclude the paper with a discussion about possible followup work.

2. Line-Symmetric Motion Manifold

2.1. Dual quaternion representation

Following the notation in [1], an element g of the special Euclidean group
SE(3) is mapped into the Study quadric Qs under dual quaternion representa-
tion:

Qs:=

{
g=(a0+a1i+a2j+a3k)+ε(b0+b1i+b2j+b3k)∈RP7

∣∣∣∣∣
3∑

i=0

aibi=0

}
(1)

where i, j,k denote the quaternion units and ε denotes the dual number (ε2 = 0).

For elements g of SE(3),
∑3

i=0 a
2
i 6= 0. We also identify elements of the Lie

algebra se(3) of SE(3) with dual quaternion vectors:

se(3) := {(a1i + a2j + a3k) + ε(b1i + b2j + b3k) | ai, bi ∈ R, i = 1, 2, 3} (2)

We emphasize that the non-zero scalings of the homogeneous coordinates [ a0 :
a1 : a2 : a3 : b0 : b1 : b2 : b3 ] all represent the same transformation g. Thus it is

convenient to assume that
∑3

i=0 a
2
i = 1.

A half-turn ` is a rotation about a line for a magnitude of π. A line-symmetric
motion parameterized by µ ∈ R is given by:

g(µ) = `(µ)`−10 = `(µ)`0, `0 = `(0) (3)

where it is apparent that `−10 = `0 (Fig. 1). As illustrated in Fig. 1, g(µ) is the
screw motion along the common perpendicular of `0 and `(µ) with magnitudes of
rotation and translation specified, respectively, by twice the angle and distance
between `0 and `(µ). In other words, all finite screw axes of the line-symmetric
motion manifold M4 perpendicularly intersect the characteristic line `0, and
their corresponding Plücker coordinates span the following 4D twist subspace:

m4 = {ξ = (a1i + a2j) + ε(b1i + b2j) | ai, bi ∈ R, i = 1, 2} (4)

where `0 is aligned with the z-axis of the reference frame B0. Moreover, M4 is
the exponential image1 of m4:

M4 = expm4 :=
{
eξ
∣∣ ∀ξ ∈ m4

}
(5)

1For consistency, we assume in this paper that e(·) is the quaternion exponential map; the

screw motion g corresponding to a fixed unit screw axis ξ and magnitude θ is given by e
θ
2
ξ.

See [9] for more details.
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2.2. Symmetric subspace property

Further geometric properties of M4 may be derived by considering its sym-
metric subspace structure [6, 7]. In particular, a symmetric subspace M of SE(3)
is always given by the exponential image of a special type of vector subspace m
of se(3) called a Lie triple subsystem (LTS), namely one that satisfies:

[[ξ1, ξ2], ξ3] ∈ m ∀ξ1, ξ2, ξ3 ∈ m (6)

where the commutator [·, ·] is defined by [ξ1, ξ2] := ξ1 × ξ2,∀ξ1, ξ2 ∈ se(3).
The LTS m4 of M4, as given in Eq. (4), comprises screws of arbitrary pitch

along all lines that perpendicularly intersect the z-axis (named the fifth spe-
cial four-system in [10]). The commutator algebra of m4, denoted h4, is the
cylindrical algebra along the z-axis:

h4 := [m4,m4] = {a3k + εb3k | a3, b3 ∈ R} (7)

It is immediate that m4∩h4 = {0} and m4⊕h4 = se(3). We summarize hereafter
the symmetric subspace properties of M4, proved in [6], which will be useful in
the next section:

1. Inversion symmetry : M4 is closed under inversion symmetry:

ghg ∈ M4, ∀g,h ∈ M4 (8)

2. Conjugation invariance: M4 remains unchanged under arbitrary cylindri-
cal displacement, i.e., invariant under conjugation by elements of the form
eη,η ∈ h4:

eηM4e
−η = M4 ∀η ∈ h4 (9)

or equivalently, m4 is invariant under Adjoint transformations by elements
of h4:

Ad(eη)m4 := eηm4e
−η = m4 ∀η ∈ h4 (10)

3. Half-angle property : the (right-trivialized) tangent space of M4 at a generic
point g = eξ ∈ M4, denoted TgM4, is give by:

TgM4 = Ad(e
ξ
2 )m4 (11)

In other words, TgM4 is a displaced copy of m4, with its characteristic

line located at Ad(e
ξ
2 )k, which exactly corresponds to the line on the

basic surface generating the current transformation g, as shown in Fig. 1.

4. Generalized polar decomposition: any transformation g in a local neigh-
borhood of 1 ∈ SE(3) may be uniquely written as the product of two
exponentials with exponents in m4 and h4, respectively:

g = eξeη ξ ∈ m4,η ∈ h4 (12)
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(a) (b)

Figure 2: Demonstration of a LSMG (under development, courtesy of Roberto di Leva) for axis
alignment of the stylus of a haptic interface. (a) Initial configuration; (b) target configuration.

2.3. Motion properties of the LSMG from an application point of view

2.3.1. Application in haptic interface design

It is clear that any screw axis belonging to the screw system of m4 may serve
as a finite screw axis for M4 and hence its LSMGs. Using the four DoFs of M4,
we may displace a line-symmetric object with initial symmetry axis k so that
its axis occupies an arbitrary location Ad(gi)k,gi ∈ M4: it suffices to screw the
object along the common perpendicular of k and Ad(gi)k (see Fig. 1, where the
finite screw axis is represented by a green threaded solid arrow). Alternatively,
we see from the generalized polar decomposition Eq. (12) that for any g ∈ SE(3):

Ad(g)k = Ad(eξeη)k = Ad(eξ)Ad(eη)k = Ad(eξ)k, ξ ∈ m4,η ∈ h4 (13)

where the cylindrical motion eη,η ∈ h4 does not contribute to the change of
the overall shape (axis) of the object. This observation naturally leads to the
following potential application of LSMGs. When tracking the stylus of a haptic
interface [11], the six DoFs of the stylus can be functionally decomposed into
M4 describing its axis location and the cylindrical motion group describing the
stylus spin and penetration depth. A LSMG capable of arbitrarily positioning
the end-effector (stylus) axis is shown in Fig. 2. The explanation of its structure
is postponed to the next sections.

2.3.2. Application in remote center-of-motion device design

Recall that for any point on the characteristic line `0 of M4, there passes a
pencil of arbitrary-pitch finite screw axes (as illustrated by the green disks in
Fig. 1), which in particular allows the end-effector of a LSMG to perform omni-
directional tilt about the point. In other words, a LSMG may work like a 2-DoF
zero-torsion parallel wrist [12] about any point on `0 (in its workspace). This
property is graphically illustrated in Fig. 3 (a) and (b). The point of rotation
is sometimes referred to as a remote center-of-motion (RCM).
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(a) (b)

(c) (d)

Figure 3: Demonstration of a LSMG as a RCM device for minimally invasive surgery. (a)
Initial configuration; (b) tilting about a RCM on the characteristic line k; (c) translating
the end-effector over to a desired RCM lying outside the characteristic line k; (d) tilting the
end-effector about the desired RCM in (c) with involuntary sliding.

More generally, a LSMG can also place the RCM at an arbitrary location
in space (within its workspace). As illustrated in Fig. 3 (c) and (d), the LSMG
can first translate its end-effector above the intended RCM that does not lie on
`0 and then tilt its axis about the RCM. Note however that in this case there
is an involuntary sliding of the end-effector along its axis. This can be easily
compensated by an additional prismatic joint concatenated to the end-effector
along its axis.

The aforesaid motion properties of LSMGs may be potentially applied to
minimally invasive surgery (MIS), where a surgical instrument has to be inserted
into patient’s body through a small trocar. The instrument must be pivoted
at the trocar without incurring lateral motions, i.e., considering the trocar as a
RCM of the instrument [13]. One of the main problems of existing MIS parallel
robot designs [14, 15] is that they can only move about a fixed RCM (however,
see [16] for an exception). The whole robot must then be properly placed with
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respect to the patient so that the RCM is aligned with the intended trocar. On
the other hand, the LSMG (with an additional cylindrical joint concatenated to
its end-effector) may serve as a better alternative where the RCM can be easily
adapted to the trocar on the patient without moving the whole mechanism.

3. Type Synthesis of Kinematic Chains Generating Line Symmetric
Motions

3.1. State-of-the-art parallel mechanism type synthesis methods

State-of-the-art methods on type synthesis of mechanisms for motion gener-
ation are mainly based on the mechanical realization of product-of-exponential
(POE) manifolds [6] (or a virtual chain [17]) by serial kinematic chains. Hunt
was probably the first to give an account of type synthesis of parallel mecha-
nisms by using screw theory [18]. Later Hervé et al. [19] proposed a systematic
type synthesis method using Lie subgroups of SE(3), and later generalized it
to include dependent products of subgroups [20, 21]. Screw-theory-based type
synthesis methods were later pursued, among others, by Huang and Li [22],
Kong and Gosselin [23, 24], Fang and Tsai [25] and Carricato [26, 27]. Synthe-
sis approaches based on screw theory and Lie groups may eventually lead to the
same results [28]. A thorough review of design methods for parallel mechanisms
is out of the scope of this paper. The interested reader may refer to [17].

3.2. Generating M4 using symmetric chains

It can be proved that M4 is not a POE manifold and hence can be generated
by no 4-DoF serial kinematic chain. This impossibility is essentially due to
the fact that the generalized polar decomposition Eq. (12) of a POE eξ1eξ2 ,
ξ1, ξ2 ∈ m4, namely:

eξ1eξ2 = eξ
′
eη ξ′ ∈ m4,η ∈ h4 (14)

will in general have a non-zero η-exponent when neither of ξi’s is a zero vector.
It turns out that M4 can only be generated by redundant kinematic chains (i.e.,
having more than four 1-DoF lower pairs) with additional constraints imposed.

In [6], we introduced the concept of symmetric twist chains (SCs) for the
generation of symmetric subspaces of SE(3). In particular, a m4-SC is an 8-tuple
of unit twists, denoted as (ξ+1 , ξ

+
2 , ξ

+
3 , ξ

+
4 , ξ

−
4 , ξ

−
3 , ξ

−
2 , ξ

−
1 ), which comprises four

nesting symmetric pairs (SP) (ξ+i , ξ
−
i ) defined by:{

ξ+i := ξi + ηi

ξ−i := ξi − ηi

ξi ∈ m4,ηi ∈ h4, i = 1, . . . , 4 (15)

and satisfies one of the following equivalent conditions (see [6] for details):

span{ξ1, ξ2, ξ3, ξ4} = m4 (16a)

span{ξ+1 , ξ
+
2 , ξ

+
3 , ξ

+
4 } ⊕ h4 = se(3) (16b)

span{ξ−4 , ξ
−
3 , ξ

−
2 , ξ

−
1 } ⊕ h4 = se(3) (16c)
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Geometrically, each ξ+i (after sign flip) is always line-symmetric to ξ−i about
the characteristic line `0, as illustrated in Fig. 4. In other words, we have:

Ad(k)ξ+i = k(ξi + ηi)k
−1 = kξik

−1 + kηik
−1 = −ξi + ηi = −ξ−i (17)

where we have used the fact that ξi ∈ m4 perpendicularly intersects k and
ηi ∈ h4 coincides with k. Alternatively, every SP (ξ+i , ξ

−
i ) can be built from

ξi ∈ m4 via a geometric approach. For example, (ξ+i , ξ
−
i ) is generated from

ξi ∈ m4 (when ξi has a finite pitch pi) by first applying a pair of rotations about
δi ∈ m4 and then a pair of translations along δ′i, both with equal and opposite
magnitudes. When ξj ∈ m4 has instead infinite pitch, (ξ+j , ξ

−
j ) is generated by

applying a pair of rotations about δj ∈ m4 with equal and opposite magnitudes.
For future use, we denote the joint variable of ξ±i by θ±i .

The reason for the above definition of SCs is that such a kinematic chain
may generate M4 under the following symmetric movement condition:

θ+i = θ−i =: θi, i = 1, 2, 3, 4 (18)

To prove this condition, we first notice that:

(θ1, θ2, θ3, θ4) 7→ e
θ1
2 ξ+

1 e
θ2
2 ξ+

2 e
θ3
2 ξ+

3 e
θ4
2 ξ+

4 e
θ4
2 ξ−4 e

θ3
2 ξ−3 e

θ2
2 ξ−2 e

θ1
2 ξ−1 ∈ M4 (19)

as a result of the definition of SPs and the inversion symmetry (Eq. (8)) of M4.
Second, the Jacobian of the above map at (0, 0, 0, 0):

(θ̇1, θ̇2, θ̇3, θ̇4) 7→
4∑

i=1

1

2
(ξ+i + ξ−i )θ̇i =

4∑
i=1

ξiθ̇i (20)

is a linear isomorphism since {ξi}
4
i=1 are linearly independent by definition of

SC. Therefore, the m4-SC generates M4 by Eq. (19) by inverse function theorem
[29].

3.3. Type synthesis of m4-SCs

We shall consider, for simplicity, synthesis of m4-SCs with only revolute
joints, which amounts to specifying a quadruple of 0-pitch screws M− := (ξ−4 ,
ξ−3 , ξ

−
2 , ξ

−
1 ) satisfying Eq. (16c):

S− := span{ξ−4 , ξ
−
3 , ξ

−
2 , ξ

−
1 }, S− ⊕ h4 = se(3) (21)

In general, the axes of all 0-pitch screws of a 4-dimensional twist space (a four-
system, in brief) form a two-parameter family of lines known as a linear con-
gruence.

Following Hunt’s classification of general and special four-systems [10], we
have the following cases2:
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Figure 4: Examples of SPs of m4. Round, prism and threaded arrows represent, respectively,
0-pitch, infinite-pitch and finite-nonzero-pitch screws.

G) The collection of all 0-pitch screws of a general four-system comprises a
linear congruence, which may:

G2) have all its lines meet two real skew lines called directrices (hyperbolic
net) (Fig. 5(a)); the reciprocal wrench subspace (S−)⊥ is spanned by
0-pitch screws ζ1 and ζ2 aligned with the directrices;

G1) have only one real directrix (parabolic net); the reciprocal wrench
subspace (S−)⊥ is spanned by a finite nonzero-pitch screw ζ1 and a
0-pitch screw ζ2 aligned with the directrix (Fig. 5(b));

G0) have two complex directrices (elliptic net); the congruence is a one-
parameter family of reguli on ∞1 coaxial hyperboloids (Fig. 6(a)).

I) The 0-pitch screws of a first special four-system may:

I0) comprise an axial-symmetric elliptic net if its reciprocal wrench sys-
tem is formed by a pencil of finite-nonzero-pitch screws (Fig. 6(a));

I2) meet two intersecting real directrices, resulting in a degenerate con-
gruence comprising a field of lines in the directrices’ plane, as well
as a bundle of lines with center at the intersection of the directrices
(Fig. 6(b)).

II) The 0-pitch screws of a second special four-system form a degenerate con-
gruence comprising:

2Case G refers to the general four-system, whereas cases I, II, III, IV and V refer to special
four-systems of types 1 through 5. A subscript 0, 1 or 2 indicates the presence of, respectively,
0, 1 or 2 real directrices.
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(a) type G2 (b) type G1

Figure 5: Congruences formed by the axes of the 0-pitch screws in a general four-system, with
their associated kinematic chains. In the absence of one or two real directrices, ζ1(α) and
ζ2(β) are basis screws of the reciprocal two-system, with α and β denoting the screw pitches.
When α or β is zero, the axis of the corresponding screw is a real directrix.

(a) type I0 (G0) (b) type I2

Figure 6: Congruences formed by the axes of the 0-pitch screws in a first special four-system,
with their associated kinematic chains.

II1) a one-parameter family of pencils of parallel lines on as many parallel
planes, if its reciprocal wrench system is formed by a parallel pencil
of finite-nonzero-pitch screws (Fig. 7(a)).

II2) a parallel bundle formed by all lines parallel to a real directrix and
a field formed by all lines on a plane containing the real directrix
(Fig. 7(b)).

III) The 0-pitch screws of a third special four-system (the Schönflies algebra)
form a parallel bundle formed by all lines parallel to a given direction;
there are no four linearly independent 0-pitch screws.

IV) The 0-pitch screws of a fourth special four-system form a one-parameter
family of pencils of concurrent lines on as many parallel planes, with their
centers lying on a real directrix (Fig. 8(a)).

11



(a) type II1 (b) type II2

Figure 7: Congruences formed by the axes of the 0-pitch screws in special four-systems of
type 2 (a) and type 3 (b), with their associated kinematic chains.

(a) type IV (b) type V

Figure 8: Congruences formed by the axes of the 0-pitch screws in special four-systems of
type IV (a) and type V (b), with their associated kinematic chains.

V) The 0-pitch screws of a fifth special four-system lie on all lines intersecting
perpendicularly a real directrix (Fig. 8(b)).

The aforementioned cases, except for the third special four-system, lead to dis-
tinct m4-SC types, which are summarized in Tab. 1. We remark that the results
we have obtained may be easily generalized to include prismatic joints, because
it is straightforward to identify the infinite-pitch screws in the aforesaid four-
systems.

4. Type synthesis of line-symmetric motion generators

4.1. Synthesis procedure for ICPM-type LSMGs

When the symmetric movement condition Eq. (18) is not imposed, m4-SCs
are essentially 8-DoF kinematic chains, and therefore cannot directly form a

12



Table 1: Four-systems and their associated m4-SCs comprising revolute (R), universal (U)
and spherical (S) joints.

congruence of 0-pitch screws M− condition (16c)
G2 2 pencils with centers lying on the same

directrix
UU the cylindroid

spanned by
ζ1 and ζ2
contains no
axis that per-
pendicularly
intersects `0

G1 3 skew lines intersecting a 4th one at
right-angle

URR

G0 3 lines lying on a regulus of a
hyperboloid, and a 4th one outside it

4R
I0 4R
I2 a bundle and a line not passing through

the bundle center (or equivalently two
non-coplanar pencils sharing a line)

RS
(UU)

II1 2 pairs of parallel lines lying in 2 parallel
planes

4R neither ζ1 nor
ζ2 is
perpendicular
to `0

II2 a pencil and 2 parallel lines parallel to the
pencil plane

URR

IV,V 2 pencils in 2 parallel planes UU

parallel mechanism with a 4D motion space such as M4, because internal motions
will be introduced into the SCs that in general violate Eq. (18). This issue is
ubiquitous for almost all symmetric subspace motion generators, and can be
systematically resolved by adding internal interconnections within the parallel
mechanism built from in-parallel connection of multiple SCs [30]. We shall refer
to such mechanisms as interconnected parallel mechanisms (ICPMs).

Synthesis and analysis of spatial ICPM were seldom investigated in the lit-
erature [31], possibly due to a lack of understanding of its underlying principle,
i.e., why the interconnections are needed and how to exploit them in type syn-
thesis. In the following, we present a type synthesis procedure of ICPM-type
LSMGs that hopefully shed some light on this issue. It is adapted from a syn-
thesis procedure for general symmetric subspace motion generators presented
in [30].

Given a parallel mechanism comprising l m4-SCs, denoted Mi := (ξ+i1, . . . ,
ξ+i4, ξ

−
i4, . . . , ξ

−
i1), i = 1, . . . , l, the following procedure (see also Fig. 9) can be

used to systematically synthesize ICPM-type LSMGs:

Step 1) distal half-SC synthesis Synthesize, for i = 1, . . . , l, a chain of
four revolute joints represented by the quadrupleM−i := (ξ−i4, ξ

−
i3, ξ

−
i2,

ξ−i1) satisfying Eq. (16c), namely

S−i ⊕ h4 = se(3) S−i := span{ξ−i4, ξ
−
i3, ξ

−
i2, ξ

−
i1}

Step 2) whole SC synthesis Complete the m4-SC using line symmetry, as
shown in Fig. 4. This gives rise to a parallel mechanism comprising l
m4-SCs which share the same characteristic line `0.
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Step 3) constraint synthesis Verify the constraint synthesis condition at
the home configuration:∑l

i=1(S−i )⊥ = se(3)∗ (22)

where (S−i )⊥ denotes the reciprocal wrench subspace of S−i and se(3)∗

is the 6D wrench space. This is the same as verifying that the parallel

mechanism formed by the l distal half-SCs
{
M−i

}l
i=1

has mobility zero
(in the home configuration).

Step 4) adding interconnection If Step 3) is satisfied, a LSMG is formed
by connecting the innermost links (i.e., the link joining ξ−i4 to ξ+i4) of
the m4-SCs Mi’s to each other, by way of cylindrical joints along `0
(i.e., the z-axis). �

It can be seen from Step 3) and 4) that an ICPM-type LSMG is essentially
formed by concatenation of two intertwined parallel mechanisms that are line-
symmetric to each other. The constraint synthesis condition Eq. (22) ensures
that the distal mechanism moves in unison with the proximal mechanism. We
emphasize that although Eq. (22) is only verified in the home configuration, the
motion properties of the resulting LSMG nevertheless hold for finite movements.

To carry out the synthesis of LSMGs, note that Step 1) was dealt with in
Sect. 3, and Steps 2) and 4) are trivial. Therefore, we are only left with verifying
Step 3). When (S−i )⊥ may be spanned by two 0- or ∞-pitch screws ζi1, ζi2,
i = 1, . . . , l (which is the case for type G2, I2, II2, IV and V; the other cases are
discussed later in the paper), Step 3) reduces to verifying Eq. (23) with a set of
generators (ζ11, ζ12, . . . , ζl1, ζl2):

span{ζ11, ζ12, . . . , ζl1, ζl2} = se(3)∗ (23)

Thus, at least three m4-SCs are required for the synthesis of LSMGs. In partic-

ular, when all
{
ζij

}3,2
i,j=1,1

are 0-pitch wrenches, Eq. (23) reduces to determining

the linear independence of six spatial lines (possibly at infinity) [32, 33].

4.2. On the linear independence of six lines

For the sake of simplicity, consider a LSMG comprising three m4-SCs of the
same type and of identical geometry, i.e., each one being a displaced copy of a
reference chain, say M0 = (ξ+01, ξ

+
02, ξ

+
03, ξ

+
04, ξ

−
04, ξ

−
03, ξ

−
02, ξ

−
01):

ξ±ij = Ad(gi)ξ
±
0j i = 1, 2, 3, j = 1, 2, 3, 4 (24)

It can be inferred from the fact that the three m4-SCs must share the same
characteristic line `0 (the z-axis) that the leg displacement gi can only be a
cylindrical motion about `0. This is consistent with the line-symmetric motion
manifold M4 being conjugation invariant under cylindrical motion (Property 2
in Sect. 2).
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Figure 9: Synthesis procedure of line-symmetric motion generators.

(a) (b)

Figure 10: Spatial distribution of constraint wrenches of the LSMG. (a) A field and a parallel
bundle perpendicular to it; (b) the two reguli on a ruled hyperboloid of revolution.

In principle, the three m4-SCs of the LSMG can be generated by any cylin-
drical displacement. In order to have a uniform workspace distribution and sin-
gularity behavior, and also to simplify the geometry of the constraint wrenches
(ζ11, ζ12, ζ21, ζ22, ζ31, ζ32) for conceptual design, we displace the three m4-SCs
so that they form a three-fold line-symmetry about `0. Consequently, both
ζ11, ζ21, ζ31 and ζ12, ζ22, ζ32 form a three-fold line-symmetry about `0.

4.2.1. A field and a parallel bundle

When ζi1, ζi2 form a pair of real finite lines, for i = 1, 2, 3, the three m4-SCs
can be arranged so that, at the home configuration, ζ11, ζ21 and ζ31 span a
bundle of parallel lines (parallel to the z-axis), whereas ζ12, ζ22 and ζ32 span a
field in a plane (xy-plane) perpendicular to the parallel bundle (see Fig. 10(a)).

To see that these six lines are linearly independent, it suffices to see that the
screw systems of the field and the parallel bundle comprise only 0- and∞-pitch
screws. Should the corresponding wrench subspaces, namely span(ζ11, ζ21, ζ31)
and span(ζ12, ζ22, ζ32) have a non-trivial intersection, it must also comprise 0-
or ∞-pitch screws only. However, this is impossible because: the 0-pitch screws
of the field lie inside its plane while those of the bundle are perpendicular to it;
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(a) (b)

Figure 11: (a) Line symmetric motion generator of type G2. For clarity, only the joint screws
of the first leg are shown; (b) actuation of the proximal half mechanism of the LSMG (actuated
joint indicated by underline on the joint twist).

the ∞-pitch screws of the field are perpendicular to its plane while those of the
bundle are parallel to it. Physically, the parallel bundle constrains the instanta-
neous end-effector motion onto the plane perpendicular to the bundle. On the
other hand, the planar field further removes all instantaneous mobility inside
the plane [34]. The LSMGs with type-G2 (Fig. 11) and type-I2 (Fig. 12(a))
SCs may be synthesized in such a fashion. We would like to point out that
the prototype design shown earlier in Fig. 2 and 3 is a type-G2 LSMG, with
ξ+i2, i = 1, 2, 3 replaced by double-parallelogram curve-scribing mechanism [35]
(to avoid link collision).

4.2.2. Two reguli on a ruled hyperboloid of revolution

Another convenient spatial pattern for six linearly independent lines can be
established using the two reguli on a ruled hyperboloid. It is well known that any
three distinct lines belonging to either regulus is linearly independent. We may
then simply set ζ11, ζ21, ζ31 and ζ12, ζ22, ζ32 to be distinct lines belonging to the
two reguli of a ruled quadric of revolution respectively, as shown in Fig. 10(b).
To see that all six lines are linearly independent, we notice that they give rise to
a quadratic complex of tangent lines of the quadric [36, Ch. 16.91]. However, the
six lines are linearly dependent only if they belong to a common linear complex.
Note that in this case, the two constraint wrenches associated with the same
m4-SC form a pencil (such as in the case of type I2 SCs). This offers new types
of LSMG other than the one shown in Fig. 12(a).

4.2.3. Two reguli on concentric hyperboloids of revolution

We may further generalize the previous case by suitably changing the com-
mon pitch of ζ11, ζ21, ζ31 and/or ζ12, ζ22, ζ32, or even let the two groups lie on
different concentric hyperboloids, thus including all m4-SCs with non-zero-pitch
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(a) (b)

Figure 12: (a) Line symmetric motion generator of type I2; line symmetric motion generator
of type II2. For clarity, only the joint screws of the first leg are shown.

constraint wrenches (type G0, G1, I0 and II1). This is because the principle
screws of the three-systems corresponding to ζ11, ζ21, ζ31 and ζ12, ζ22, ζ32 are
perfectly aligned, which makes identification of singular configurations trivial.
For example, changing the pitches of ζ11, ζ21, ζ31 to a non-zero finite value α
amounts changing the three principle pitches of span(ζ11, ζ21, ζ31) by α.

In the extreme case, ζi2 (i = 1, 2, 3) can be chosen to have an infinite pitch,
so that ζ12, ζ22, ζ32 span a bundle of infinite-pitch screws, and ζ11, ζ21, ζ31

(after a convenient translation to become concurrent) span a bundle of 0-pitch
screws. The LSMGs with type II2 (Fig. 12(b)),type IV (Fig. 13(a)) and type
V (Fig. 13(b)) SCs may be synthesized in such a fashion.

4.3. Actuation of LSMGs

It is clear from our synthesis approach that each LSMG comprises two inter-
twined parallel mechanisms. In order to fully control a LSMG, we may simply
actuate four R joints of the proximal half mechanism so that, when the actuated
joints are removed, the mechanism becomes a structure (thus achieving mobility
zero) [17].

Consider for example the G2-type LSMG shown in Fig. 11 (a). Its proximal
half mechanism, illustrated in Fig. 11 (b), comprises one 4-DoF legM+

1 and two
6-DoF legs, namelyM+

2 andM+
3 each one being concatenated with a cylindrical

joint along the z-axis at the home configuration. Theoretically speaking, the
four DoFs of the two cylindrical joints in legs 2 and 3 are guaranteed to fully
actuate the proximal half mechanism, since the mechanism reduces to the in-
parallel connection of M+

1 , M+
2 and M+

3 after the two cylindrical joints are
removed. Since, by construction, the in-parallel connection of M−1 , M−2 and
M−3 has zero mobility, its line-symmetric image, namely that of M+

1 , M+
2 and

M+
3 should also have zero mobility. Note that this actuation strategy applies

to other LSMGs synthesized in the paper.
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(a) (b)

Figure 13: (a) Line symmetric motion generator of type IV; (b) line symmetric motion gen-
erator of type V. For clarity, only the joint screws of the first leg are shown.

However, from a practical point of view, it is preferable to actuate the joints
located on the base of the LSMG. Therefore, a second actuation strategy may be
proposed. Take again the G2-type LSMG for example, we may choose to actuate
the first two revolute joints of the first two legs, namely ξ+11, ξ+12, ξ+21 and ξ+22
(indicated by an underscore in Fig. 11 (b)), of the proximal half mechanism. To
see that the removal of these four joints reduces the mechanism to a structure,
we must verify that the screw systems of the two legs have a trivial intersection
at the home configuration (since the third leg has 6 DoFs). This can be achieved
by first identifying the two directrices, also denoted ζ1 and ζ2 in Fig. 11 (b), of
the screw system of leg 2, and then verifying that no zero-pitch screws of the
pencil spanned by ξ+13 and ξ+14 (indicated by the disk with blue boundary in
Fig. 11) would simultaneously intersect ζ1 and ζ2. In general, there is only one
zero-pitch screw intersecting both directrices and also lying on the plane of the
pencil, which cannot at the same pass the center of the pencil in a generic way.
This means that a generic parametric design of the mechanism would lead to
the proposed actuation strategy being valid. Each actuation pair (ξ+11, ξ

+
12) and

(ξ+21, ξ
+
22) can be driven, for example, by a fully decoupled 2-DoF parallel wrist

[37]. Finally, it can be shown that this actuation strategy also applies to other
LSMGs synthesized in the paper.

4.4. On completeness of the synthesis results

So far, we have presented, based on a complete classification of four-systems
(Tab. 1), axis-symmetric LSMGs with identical types of legs. Under such an
assumption, the constraint synthesis problem of the LSMG reduces to one of
the three geometry settings discussed in Sect. 4.2.1, 4.2.2 and 4.2.3. Although
only the LSMGs with five of the nine types of m4-SCs listed in Tab. 1 are
illustrated in Fig. 11, 12 and 13, the remaining LSMGs may be proved to follow
similar geometry. Generalizing from the synthesis results we have presented,

18



one may then combine three arbitrary types of m4-SCs chosen from Tab. 1, and
also remove the axis-symmetry assumption to generate more synthesis results
in a straightforward manner, albeit with laborious effort. When a LSMG is
not constructed with axis-symmetry, the geometry of its constraint synthesis
problem also presents a general pattern, which can still be properly conducted by
algebraic computation instead of the geometric reasoning offered in Sect. 4.2.1,
4.2.2 and 4.2.3.

Another possible generalization is the replacement of one or more R joints
in the synthesized LSMGs with prismatic joints. This should be done by fol-
lowing the same synthesis procedure presented in Sect. 3. The directions of the
prismatic joints in the distal half m4-SCs M−i , i = 1, . . . , l can be easily deter-
mined by the two constraint wrenches of the corresponding leg screw system.
For example, for the type-G2 half SC shown in Fig. 5(a), there can be only one
linearly independent prismatic joint which is perpendicular to both ζ1 and ζ2.
When there is an infinite-pitch constraint wrench (as in the case of the type-II1
half SC as illustrated in Fig. 7(a)), a total of two linearly independent prismatic
joints can be found, which are both perpendicular to the constraint wrench
with finite pitch. We remark that, due to the line-symmetric construction of
the m4-SCs, the prismatic joints appear in each SC in pairs. From a practi-
cal point of view, only one of the prismatic joints (in the proximal half SC)
will be actuated, leaving unactuated prismatic joints in the resulting LSMG.
Consequently, implementation of prismatic joints in a LSMG is arguably a less
practical strategy.

5. Conclusions

We presented for the first time an essentially complete type synthesis of
4-DoF mechanisms capable of generating arbitrary line-symmetric motions, based
on both symmetric space theory and classic screw theory. The synthesis condi-
tions for the LSMGs are given, and are used to systematically generate a whole
spectrum of novel mechanisms. As far as we consider synthesis using only rev-
olute joints and three-fold line-symmetry, the synthesis result of the LSMGs
presented here is complete. Our future work shall focus on conceptual design,
analysis, optimization and prototyping of some of the mechanisms presented
here.
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