Skip to main content

Sensitivity Analysis and Identification of Human Parameters for an Adaptive, Underactuated Hand Exoskeleton

  • Conference paper
  • First Online:
Advances in Robot Kinematics 2018 (ARK 2018)

Abstract

Designing an underactuated hand exoskeleton system that contains user’s finger in the kinematics loop improves the adjustability for different hand sizes. On the downside, the configuration and motion level kinematics become highly responsive to the finger properties and how the device is worn. In this paper, first we investigate the sensitivity of these variable parameters on the finger pose and force transmission analysis. Considering that the manual measurements of these parameters might be inaccurate and time consuming, we present an adaptive calibration algorithm to estimate them when a user is asked to wear the device. Finally, comparing the results of the calibration algorithm to the readings of an optical tracking system shows that the proposed solution is capable of estimating the variable parameters well enough to improve the kinematics analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, S., Landers, K.A., Park, H.-S.: Development of a biomimetic hand exotendon device (biomhed) for restoration of functional hand movement post-stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 886–898 (2014)

    Article  Google Scholar 

  2. Iqbal, J., Tsagarakis, N., Caldwell, D.: Human hand compatible underactuated exoskeleton robotic system. Electr. Lett. 50(7), 494–496 (2014)

    Article  Google Scholar 

  3. Troncossi, M., Foumashi, M.M., Carricato, M., Castelli, V.P.: Feasibility study of hand exoskeleton for rehabilitation of post-stroke patients. In: Proceedings of the ASME 11th Biennial Conference on Engineering Systems Design and Analysis, ESDA2012, Nantes, France (2012)

    Google Scholar 

  4. Foumashi, M.M., Troncossi, M., Castelli, V.P.: Design of a new hand exoskeleton for rehabilitation of post-stroke patients. In: Romansy 19–Robot Design, Dynamics and Control, pp. 159–166. Springer (2013)

    Chapter  Google Scholar 

  5. Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti, C., Castelli, V.P., Procopio, C., Lamola, G., Chisari, C., et al.: An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Trans. Haptics 8(2), 140–151 (2015)

    Article  Google Scholar 

  6. Barsotti, M., Sotgiu, E., Leonardis, D., Sarac, M., Sgherri, G., Lamola, G., Chiara, F., Procopio, C., Chisari, C., Frisoli, A.: A novel approach for upper limb robotic rehabilitation for stroke patients. In: International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pp. 459–469. Springer (2016)

    Chapter  Google Scholar 

  7. Sarac, M., Solazzi, M., Sotgiu, E., Bergamasco, M., Frisoli, A.: Design and kinematic optimization of a novel underactuated robotic hand exoskeleton. Meccanica 52(3), 749–761 (2017)

    Article  MathSciNet  Google Scholar 

  8. Sarac, M., Solazzi, M., Leonardis, D., Sotgiu, E., Bergamasco, M., Frisoli, A.: Design of an underactuated hand exoskeleton with joint estimation. In: Advances in Italian Mechanism Science, pp. 97–105. Springer (2017)

    Google Scholar 

  9. Griffin, W.B., Findley, R.P., Turner, M.L., Cutkosky, M.R.: Calibration and mapping of a human hand for dexterous telemanipulation. In: ASME IMECE 2000 Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, pp. 1–8 (2000)

    Google Scholar 

  10. Fischer, M., van der Smagt, P., Hirzinger, G.: Learning techniques in a dataglove based telemanipulation system for the DLR hand. In: 1998 IEEE International Conference on Robotics and Automation, 1998, Proceedings, vol. 2, pp. 1603–1608. IEEE (1998)

    Google Scholar 

  11. Bennett, D.J., Hollerbach, J.M.: Closed-loop kinematic calibration of the Utah-MIT hand. In: Experimental Robotics I, pp. 539–552. Springer (1990)

    Google Scholar 

  12. Bennett, D.J., Hollerbach, J.M.: Self-calibration of single-loop, closed kinematic chains formed by dual or redundant manipulators. In: Proceedings of the 27th IEEE Conference on Decision and Control, 1988, pp. 627–629. IEEE (1988)

    Google Scholar 

  13. Cempini, M., De Rossi, S.M.M., Lenzi, T., Vitiello, N., Carrozza, M.C.: Self-alignment mechanisms for assistive wearable robots: a kinetostatic compatibility method. IEEE Trans. Robot. 29(1), 236–250 (2013)

    Article  Google Scholar 

  14. Bottlang, M., Madey, S., Steyers, C., Marsh, J., Brown, T.D.: Assessment of elbow joint kinematics in passive motion by electromagnetic motion tracking. J. Orthop. Res. 18(2), 195–202 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Guardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Guardo, A., Sarac, M., Gabardi, M., Leonardis, D., Solazzi, M., Frisoli, A. (2019). Sensitivity Analysis and Identification of Human Parameters for an Adaptive, Underactuated Hand Exoskeleton. In: Lenarcic, J., Parenti-Castelli, V. (eds) Advances in Robot Kinematics 2018. ARK 2018. Springer Proceedings in Advanced Robotics, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-93188-3_51

Download citation

Publish with us

Policies and ethics