Abstract
In this paper we propose a novel synergy-based myocontrol scheme for finger force estimation and classification which is able to simultaneously control 4 fingers with a training phase based only on individual-finger data. The proposed method has been tested using the online-available NinaPro database and validated in a preliminary experiment conducted with the use of a hand-exoskeleton. Results show how the presented approach outperforms considerably the linear regression method which is considered standard approach in myoelectric control. The low error rate obtained (smaller than 10% of the targeted force) and the effectiveness in decreasing the number of false activation open the possibilities for future uses in fields such as haptics and neuro-rehabilitation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vujaklija I., Amsuess S., Roche A.D., Farina D., Aszmann, O.C.: Clinical evaluation of a socket-ready naturally controlled multichannel upper limb prosthetic system. In: González-Vargas, J., Ibáñez, J., Contreras-Vidal, J., van der Kooij, H., Pons, J. (eds.) Wearable Robotics: Challenges and Trends. Biosystems & Biorobotics, vol. 16, pp. 3–7. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46532-6_1
Leonardis, D., Barsotti, M., Loconsole, C., Solazzi, M., Troncossi, M., Mazzotti, C., Castelli, V.P., Procopio, C., Lamola, G., Chisari, C., et al.: An emg-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Trans. Haptics 8(2), 140–151 (2015)
Khushaba, R.N., Al-Ani, A., Al-Jumaily, A.: Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control. IEEE Trans. Biomed. Eng. 57(6), 1410–1419 (2010)
Celadon, N., Došen, S., Binder, I., Ariano, P., Farina, D.: Proportional estimation of finger movements from high-density surface electromyography. J. NeuroEng. Rehabil. 13(1), 73 (2016)
Rasool, G., Iqbal, K., Bouaynaya, N., White, G.: Real-time task discrimination for myoelectric control employing task-specific muscle synergies. IEEE Trans. Neural Syst. Rehabil. Eng. 24(1), 98–108 (2016)
Zhang, S., Zhang, X., Cao, S., Gao, X., Chen, X., Zhou, P.: Myoelectric pattern recognition based on muscle synergies for simultaneous control of dexterous finger movements. IEEE Trans. Hum. Mach Syst. 47(4), 576–582 (2017)
Jiang, N., Dosen, S., Muller, K.R., Farina, D.: Myoelectric control of artificial limbs: is there a need to change focus? [In the Spotlight]. IEEE Signal Process. Mag. 29(5), 150–152 (2012)
Rehbaum, H., Jiang, N., Farina, D.: Real time simultaneous and proportional control of multiple degree of freedom: initial results of amputee tests. In: 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1346–1349 (2012)
Roche, A.D., Rehbaum, H., Farina, D., Aszmann, O.C.: Prosthetic myoelectric control strategies: a clinical perspective. Curr. Surg. Rep. 2(3), 44 (2014)
Jiang, N., Englehart, K.B., Parker, P.A.: Extracting simultaneous and proportional neural control information for multiple-dof prostheses from the surface electromyographic signal. IEEE Trans. Biomed. Eng. 56(4), 1070–1080 (2009)
Kim, P., Kim, K.S., Kim, S.: Modified nonnegative matrix factorization using the hadamard product to estimate real-time continuous finger-motion intentions. IEEE Trans. Hum. Mach. Syst. 47(6), 1089–1099 (2017)
Gijsberts, A., Atzori, M., Castellini, C., Müller, H., Caputo, B.: Movement error rate for evaluation of machine learning methods for semg-based hand movement classification. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 735–744 (2014)
Sarac, M., Solazzi, M., Sotgiu, E., Bergamasco, M., Frisoli, A.: Design and kinematic optimization of a novel underactuated robotic hand exoskeleton. Meccanica 52(3), 749–761 (2017)
Koiva, R., Hilsenbeck, B., Castellini, C.: FFLS: an accurate linear device for measuring synergistic finger contractions. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 531–534. IEEE (2012)
Sanger, T.D.: Bayesian filtering of myoelectric signals. J. Neurophysiol. 97(2), 1839–1845 (2007)
Hofmann, D., Jiang, N., Vujaklija, I.: Bayesian filtering of surface EMG for accurate simultaneous and proportional prosthetic control. IEEE Trans. Neural Syst. Rehabil. Eng. 24(12), 1333–1341 (2016)
Tomiak, T., Abramovych, T.I., Gorkovenko, A.V., Vereshchaka, I.V., Mishchenko, V.S., Dornowski, M., Kostyukov, A.I.: The movement-and load-dependent differences in the emg patterns of the human arm muscles during two-joint movements (a preliminary study). Fronti. Physiol. 7, 218 (2016)
Santello, M., Bianchi, M., Gabiccini, M., Ricciardi, E., Salvietti, G., Prattichizzo, D., Ernst, M., Moscatelli, A., Jörntell, H., Kappers, A.M., et al.: Hand synergies: integration of robotics and neuroscience for understanding the control of biological and artificial hands. Phys. Life Rev. 17, 1–23 (2016)
Acknowledgments
This work has been partially funded by: the EU Horizon2020 project nr. 644839 ICT-23-2014 CENTAURO; the national PRIN-2015 ModuLimb (Prot. 2015HFWRYY), the RONDA project (Regione Toscana, Italy FAS Salute 2014 program).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Murciego, L.P., Barsotti, M., Frisoli, A. (2018). Synergy-Based Multi-fingers Forces Reconstruction and Discrimination from Forearm EMG. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10894. Springer, Cham. https://doi.org/10.1007/978-3-319-93399-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-93399-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93398-6
Online ISBN: 978-3-319-93399-3
eBook Packages: Computer ScienceComputer Science (R0)