Skip to main content

Vibrotactile Signal Generation from Texture Images or Attributes Using Generative Adversarial Network

  • Conference paper
  • First Online:
Haptics: Science, Technology, and Applications (EuroHaptics 2018)

Abstract

Providing vibrotactile feedback that corresponds to the state of the virtual texture surfaces allows users to sense haptic properties of them. However, hand-tuning such vibrotactile stimuli for every state of the texture takes much time. Therefore, we propose a new approach to create models that realize the automatic vibrotactile generation from texture images or attributes. In this paper, we make the first attempt to generate the vibrotactile stimuli leveraging the power of deep generative adversarial training. Specifically, we use conditional generative adversarial networks (GANs) to achieve generation of vibration during moving a pen on the surface. The preliminary user study showed that users could not discriminate generated signals and genuine ones and users felt realism for generated signals. Thus our model could provide the appropriate vibration according to the texture images or the attributes of them. Our approach is applicable to any case where the users touch the various surfaces in a predefined way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Culbertson, H., Unwin, J., Kuchenbecker, K.J.: Modeling and rendering realistic textures from unconstrained tool-surface interactions. IEEE Trans. Haptics 7(3), 381–393 (2014)

    Article  Google Scholar 

  2. Shin, S., Osgouei, R.H., Kim, K.D., Choi, S.: Data-driven modeling of isotropic haptic textures using frequency-decomposed neural networks. In: IEEE World Haptics Conference, WHC 2015, pp. 131–138 (2015)

    Google Scholar 

  3. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative Adversarial Nets. Adv. Neural. Inf. Process. Syst. 27, 2672–2680 (2014)

    Google Scholar 

  4. Mirza, M., Osindero, S.: Conditional Generative Adversarial Nets. arXiv preprint arXiv:1411.1784 (2014)

  5. Reed, S., Akata, Z., Yan, X., et al.: Generative adversarial text to image synthesis. In: ICML, pp. 1060–1069 (2016)

    Google Scholar 

  6. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. In: CVPR (2017)

    Google Scholar 

  7. Ledig, C., Theis, L., Huszar, F., et al.: Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. arXiv preprint arXiv:1609.04802 (2016)

  8. Odena, A., Olah, C., Shlens, J.: Conditional Image Synthesis With Auxiliary Classifier GANs. arXiv preprint arXiv:1610.09585 (2016)

  9. Chen, L., Srivastava, S., Duan, Z., Xu, C.: Deep Cross-Modal Audio-Visual Generation. arXiv preprint arXiv:1704.08292 (2017)

  10. Griffin, D.: Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Sig. Process. 32(2), 236–243 (1984)

    Article  Google Scholar 

  11. Strese, M., Schuwerk, C.: Multimodal feature-based surface material classification. IEEE Trans. Haptics 10(2), 226–239 (2017)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  13. Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  14. Jin, Y., Zhang, J., Li, M., et al.: Towards the Automatic Anime Characters Creation with Generative Adversarial Networks. arXiv preprint arXiv:1708.05509 (2017)

  15. Kodali, N., Abernethy, J., Hays, J., Kira, Z.: On Convergence and Stability of GANs. arXiv preprint arXiv:1705.07215 (2017)

  16. Lee, K., Hicks, G., Nino-Murcia, G.: Validity and reliability of a scale to assess fatigue. Psychiatry Res. 36, 291–298 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Ban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ujitoko, Y., Ban, Y. (2018). Vibrotactile Signal Generation from Texture Images or Attributes Using Generative Adversarial Network. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10894. Springer, Cham. https://doi.org/10.1007/978-3-319-93399-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93399-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93398-6

  • Online ISBN: 978-3-319-93399-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics