Skip to main content

LiquidReality: Wetness Sensations on the Face for Virtual Reality

  • Conference paper
  • First Online:
Haptics: Science, Technology, and Applications (EuroHaptics 2018)

Abstract

We present LiquidReality, a wearable system that simulates wetness sensations directly on the user’s face for immersive virtual reality applications. The LiquidReality system consists of a headmounted display integrated with thermal and vibrotactile modules that provides co-located haptic feedback with the displayed visuals. With this system, we conducted a preliminary study that evaluated nine types of thermal and thermal/vibrotactile stimuli to induce a wetness sensation on the user’s face. Our results indicate that thermal only stimuli and low frequency vibrotactile stimuli (combined with thermal) induced better wetness perception. Next, using the results from this preliminary study, we evaluated the immersion enhancement when using the LiquidReality system in combination with related visuals. The results indicate that using the LiquidReality system with related visuals, enhances the level of immersion for the user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.arduino.cc/en/Main/arduinoBoardMega.

  2. 2.

    http://www.alps.com/prod/info/E/HTML/Actuator/.

  3. 3.

    http://www.techtile.org/en/techtiletoolkit/.

  4. 4.

    https://www.precisionmicrodrives.com/vibration-motors/linear-resonant-actuators-lras.

  5. 5.

    https://unity3d.com/.

References

  1. Abzu (2016). http://www.abzugame.com/

  2. Bach-y-Rita, P., Kercel, S.W.: Sensory substitution and the human machine interface. Trends Cognit. Sci. 7(12), 541–546 (2003). http://www.sciencedirect.com/science/article/pii/S1364661303002900

    Article  Google Scholar 

  3. Blum, L., Broll, W., Müller, S.: Augmented reality under water. In: SIGGRAPH 2009: Posters, SIGGRAPH 2009, pp. 97:1–97:1. ACM, New York (2009). http://doi.acm.org/10.1145/1599301.1599398

  4. Chen, Z., Peiris, R.L., Minamizawa, K.: A thermal pattern design for providing dynamic thermal feedback on the face with head mounted displays. In: Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, TEI 2017, pp. 381–388. ACM, New York (2017). http://doi.acm.org/10.1145/3024969.3025060

  5. Filingeri, D., Fournet, D., Hodder, S., Havenith, G.: Why wet feels wet? a neurophysiological model of human cutaneous wetness sensitivity. J. Neurophysiol. 112(6), 1457–1469 (2014)

    Article  Google Scholar 

  6. Gugenheimer, J., Wolf, D., Eiriksson, E.R., Maes, P., Rukzio, E.: Gyrovr: simulating inertia in virtual reality using head worn flywheels. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST 2016, pp. 227–232. ACM, New York (2016). http://doi.acm.org/10.1145/2984511.2984535

  7. Halvey, M., Wilson, G., Brewster, S.A., Hughes, S.A.: Perception of thermal stimuli for continuous interaction. In: CHI EA 2013, pp. 1587–1592 (2013)

    Google Scholar 

  8. Jain, D., Sra, M., Guo, J., Marques, R., Wu, R., Chiu, J., Schmandt, C.: Immersive scuba diving simulator using virtual reality. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST 2016, pp. 729–739. ACM, New York (2016). http://doi.acm.org/10.1145/2984511.2984519

  9. Jones, L.A., Ho, H.N.: Warm or cool, large or small? the challenge of thermal displays. IEEE Trans. Haptics 1(1), 53–70 (2008)

    Article  Google Scholar 

  10. Minamizawa, K., Kakehi, Y., Nakatani, M., Mihara, S., Tachi, S.: Techtile toolkit: a prototyping tool for design and education of haptic media. In: Proceedings of the 2012 Virtual Reality International Conference, VRIC 2012, pp. 26:1–26:2. ACM, New York (2012). http://doi.acm.org/10.1145/2331714.2331745

  11. Myles, K., Kalb, J.T.: Vibrotactile sensitivity of the head, U.S. Army Research Laboratory (2009)

    Google Scholar 

  12. Parsons, K.: Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance, 3rd edn. CRC Press Inc., Boca Raton (2014)

    Book  Google Scholar 

  13. Peiris, R.L., Peng, W., Chen, Z., Chan, L., Minamizawa, K.: Thermovr: exploring integrated thermal haptic feedback with head mounted displays. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI 2017, pp. 5452–5456. ACM, New York (2017). http://doi.acm.org/10.1145/3025453.3025824

  14. Ranasinghe, N., Jain, P., Tolley, D., Karwita, S., Yilei, S., Do, E.Y.L.: Ambiotherm: simulating ambient temperatures and wind conditions in vr environments. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST 2016 Adjunct, pp. 85–86. ACM, New York (2016). http://doi.acm.org/10.1145/2984751.2985712

  15. Shibahara, M., Sato, K.: Illusion of wet sensation by controlling temperature and softness of dry cloth. In: Bello, F., Kajimoto, H., Visell, Y. (eds.) EuroHaptics 2016. LNCS, vol. 9774, pp. 371–379. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42321-0_34

    Chapter  Google Scholar 

  16. Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoper. Virtual Environ. 7(3), 225–240 (1998). https://doi.org/10.1162/105474698565686

    Article  Google Scholar 

  17. Yamashita, S., Zhang, X., Rekimoto, J.: Aquacave: Augmented swimming environment with immersive surround-screen virtual reality. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST 2016 Adjunct, pp. 183–184. ACM, New York (2016). http://doi.acm.org/10.1145/2984751.2984760

Download references

Acknowledgment

This work was supported by the JSPS Kakenhi (JP18K18094) and the JST ACCEL Embodied Media project (JPMJAC1404), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roshan Lalintha Peiris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peiris, R.L., Chan, L., Minamizawa, K. (2018). LiquidReality: Wetness Sensations on the Face for Virtual Reality. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10894. Springer, Cham. https://doi.org/10.1007/978-3-319-93399-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93399-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93398-6

  • Online ISBN: 978-3-319-93399-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics