Abstract
In the paper, we focus on the classification of the acoustic signal and its characteristic properties, which we use for further processing of the acoustic signal. Its further processing is ensured that we are able to find the carrier frequencies of the selected signal with frequency analysis. We use compression methods to reduce the data needed to classify acoustic signals. We use neural networks to classify these signals. In addition, a method has been proposed to classify acoustic signals that are commonly found in transport. The result is the design of a method that is able to classify signals characteristic for different environments or different acoustic sources. In the paper, there is a description of the experiment that has been carried out for the mentioned purposes. For experiment is created evaluation and classification success rate on selected acoustic signals.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Astapov, S., Preden, J.S., Suurjaak, E.: A method of real-time mobile vehicle identification by means of acoustic noise analysis implemented on an embedded device. In: 2012 13th Biennial Baltic Electronics Conference (BEC), pp. 283,286, 3–5 October 2012
Olešnaníková, V., Púchyová, J.: Analysis of voice activity detection for implementation into WSN. In: CSIT 2014, Lviv, Ukraine, pp. 75–76 (2014). ISBN 978-617-607-669-8
Žalman, R., Olešnaníková, V., Šarafín, P., Kapitulík, J.: Analysis of acoustic signals in transport systems using WSN. In: TRANSCOM 2015, Žilina, Slovak Republic, pp. 105–109 (2015). ISBN 978-80-554-1045-6
Hodon, M., Šarafín, P., Ševčík, P.: Monitoring and recognition of bird population in protected bird territory. In: ISCC 2015, Larnaca, Cyprus, pp. 993–998 (2015). ISBN 978-1-4673-7194-0
Olešnaníková, V., Karpiš, O., Chovanec, M., Šarafín, P., Žalman, R.: Water level monitoring based on the acoustic signal using the neural network. In: FedCSIS 2016, Rzeszow, Poland, pp. 203–206 (2016). ISBN 978-1-4673-8860-3
Chovanec, M., Púchyová, J., Húdik, M., Kochláň, M.: Universal synchronization algorithm for wireless sensor networks - “FUSA algorithm”. In: FedCSIS 2014, Warsaw, Poland (2014). ISSN 2300–5963
Miček, J., Karpiš, O., Olešnaníková, V., Kochláň, M.: Monitoring of water level based on acoustic emissions. In: ISCC 2015, Larnaca, Cyprus, pp. 988–992 (2015). ISBN 978-1-4673-7194-0
Fritsch, L.: Metoda PCA a její implementace v jazyce C++. ČVUT in Praha, http://dsp.vscht.cz/konference_matlab/MA-TLAB07/prispevky/fritsch_l/fritsch_l.pdf
Krátký, M., Skopal, T., Snášel, V.: Efektivní vyhledávání v kolekcích obrázků tváří. In: Proceedings of DATAKON 2003, Brno, Czech Republic. VŠB, Ostrava (2003). ISBN 80-210-3215-4. http://www.cs.vsb.cz/kratky/courses/2003-04/dis/reference/effface.pdf
Jirsík, V., Hráček, P.: Neuronové sítě, expertní systémy a rozpoznávání řeči, 106 p. VUT, Brno (2002)
Šíma, J., Neruda, R.: Teoretické otázky neuronových sítí, 390 p. MATFYZPRESS, Praha (1996). http://www2.cs.cas.cz/~sima/kniha.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Žalman, R., Chovanec, M., Revák, M., Kapitulík, J. (2018). Acoustic Signal Classification Algorithm for WSN Node in Transport System. In: Hodoň, M., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2018. Communications in Computer and Information Science, vol 863. Springer, Cham. https://doi.org/10.1007/978-3-319-93408-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-93408-2_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93407-5
Online ISBN: 978-3-319-93408-2
eBook Packages: Computer ScienceComputer Science (R0)