Skip to main content

Acoustic Signal Classification Algorithm for WSN Node in Transport System

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 863))

Included in the following conference series:

  • 1601 Accesses

Abstract

In the paper, we focus on the classification of the acoustic signal and its characteristic properties, which we use for further processing of the acoustic signal. Its further processing is ensured that we are able to find the carrier frequencies of the selected signal with frequency analysis. We use compression methods to reduce the data needed to classify acoustic signals. We use neural networks to classify these signals. In addition, a method has been proposed to classify acoustic signals that are commonly found in transport. The result is the design of a method that is able to classify signals characteristic for different environments or different acoustic sources. In the paper, there is a description of the experiment that has been carried out for the mentioned purposes. For experiment is created evaluation and classification success rate on selected acoustic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Astapov, S., Preden, J.S., Suurjaak, E.: A method of real-time mobile vehicle identification by means of acoustic noise analysis implemented on an embedded device. In: 2012 13th Biennial Baltic Electronics Conference (BEC), pp. 283,286, 3–5 October 2012

    Google Scholar 

  2. Olešnaníková, V., Púchyová, J.: Analysis of voice activity detection for implementation into WSN. In: CSIT 2014, Lviv, Ukraine, pp. 75–76 (2014). ISBN 978-617-607-669-8

    Google Scholar 

  3. Žalman, R., Olešnaníková, V., Šarafín, P., Kapitulík, J.: Analysis of acoustic signals in transport systems using WSN. In: TRANSCOM 2015, Žilina, Slovak Republic, pp. 105–109 (2015). ISBN 978-80-554-1045-6

    Google Scholar 

  4. Hodon, M., Šarafín, P., Ševčík, P.: Monitoring and recognition of bird population in protected bird territory. In: ISCC 2015, Larnaca, Cyprus, pp. 993–998 (2015). ISBN 978-1-4673-7194-0

    Google Scholar 

  5. Olešnaníková, V., Karpiš, O., Chovanec, M., Šarafín, P., Žalman, R.: Water level monitoring based on the acoustic signal using the neural network. In: FedCSIS 2016, Rzeszow, Poland, pp. 203–206 (2016). ISBN 978-1-4673-8860-3

    Google Scholar 

  6. Chovanec, M., Púchyová, J., Húdik, M., Kochláň, M.: Universal synchronization algorithm for wireless sensor networks - “FUSA algorithm”. In: FedCSIS 2014, Warsaw, Poland (2014). ISSN 2300–5963

    Google Scholar 

  7. Miček, J., Karpiš, O., Olešnaníková, V., Kochláň, M.: Monitoring of water level based on acoustic emissions. In: ISCC 2015, Larnaca, Cyprus, pp. 988–992 (2015). ISBN 978-1-4673-7194-0

    Google Scholar 

  8. Fritsch, L.: Metoda PCA a její implementace v jazyce C++. ČVUT in Praha, http://dsp.vscht.cz/konference_matlab/MA-TLAB07/prispevky/fritsch_l/fritsch_l.pdf

  9. Krátký, M., Skopal, T., Snášel, V.: Efektivní vyhledávání v kolekcích obrázků tváří. In: Proceedings of DATAKON 2003, Brno, Czech Republic. VŠB, Ostrava (2003). ISBN 80-210-3215-4. http://www.cs.vsb.cz/kratky/courses/2003-04/dis/reference/effface.pdf

  10. Jirsík, V., Hráček, P.: Neuronové sítě, expertní systémy a rozpoznávání řeči, 106 p. VUT, Brno (2002)

    Google Scholar 

  11. Šíma, J., Neruda, R.: Teoretické otázky neuronových sítí, 390 p. MATFYZPRESS, Praha (1996). http://www2.cs.cas.cz/~sima/kniha.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róbert Žalman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Žalman, R., Chovanec, M., Revák, M., Kapitulík, J. (2018). Acoustic Signal Classification Algorithm for WSN Node in Transport System. In: Hodoň, M., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2018. Communications in Computer and Information Science, vol 863. Springer, Cham. https://doi.org/10.1007/978-3-319-93408-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93408-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93407-5

  • Online ISBN: 978-3-319-93408-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics