Skip to main content

Haptic Saliency Model for Rigid Textured Surfaces

  • Conference paper
  • First Online:
Haptics: Science, Technology, and Applications (EuroHaptics 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10893))

  • 2170 Accesses

Abstract

When touching an object, we focus more on some of its parts rather than touching the whole object’s surface, i.e. some parts are more salient than others. Here we investigated how different physical properties of rigid, plastic, relieved textures determine haptic exploratory behavior. We produced haptic stimuli whose textures were locally defined by random distributions of four independent features: amplitude, spatial frequency, orientation and isotropy. Participants explored two stimuli one after the other and in order to promote exploration we asked them to judge their similarity. We used a linear regression model to relate the features and their gradients to the exploratory behavior (spatial distribution of touch duration). The model predicts human behavior significantly better than chance, suggesting that exploratory movements are to some extent driven by the low level features we investigated. Remarkably, the contribution of each predictor changed as a function of the spatial scale in which it was defined, showing that haptic exploration preferences are spatially tuned, i.e. specific features are most salient at different spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Crick, F.: Function of the thalamic reticular complex: the searchlight hypothesis. Proc. Natl. Acad. Sci. 81, 4586–4590 (1984)

    Article  Google Scholar 

  2. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognit. Psychol. 12, 97–136 (1980)

    Article  Google Scholar 

  3. Treue, S.: Visual attention: the where, what, how and why of saliency. Curr. Opin. Neurobiol. 13, 428–432 (2003)

    Article  Google Scholar 

  4. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998)

    Article  Google Scholar 

  5. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40, 1489–1506 (2000)

    Article  Google Scholar 

  6. Itti, L., Koch, C.: Computational modelling of visual attention. Nat. Rev. Neurosci. 2, 194–203 (2001)

    Article  Google Scholar 

  7. Schütz, A.C., Braun, D.I., Gegenfurtner, K.R.: Eye movements and perception: a selective review. J. Vis. 11, 1–30 (2011)

    Google Scholar 

  8. Parkhurst, D., Law, K., Niebur, E.: Modeling the role of salience in the allocation of overt visual attention. Vision. Res. 42, 107–123 (2002)

    Article  Google Scholar 

  9. Oliva, A., Torralba, A., Castelhano, M.S., Henderson, J.M.: Top-down control of visual attention in object detection. Presented at the Proceedings 2003 International Conference on Image Processing, ICIP 2003 (2003)

    Google Scholar 

  10. Walther, D.B., Serre, T., Poggio, T., Koch, C.: Modeling feature sharing between object detection and top-down attention. J. Vis. 5 (2005). Article no. 1041

    Google Scholar 

  11. Foulsham, T., Underwood, G.: What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. J. Vis. 8, 1–17 (2008)

    Article  Google Scholar 

  12. Einhäuser, W., Spain, M., Perona, P.: Objects predict fixations better than early saliency. J. Vis. 8, 1–26 (2008)

    Google Scholar 

  13. Masciocchi, C.M., Mihalas, S., Parkhurst, D., Niebur, E.: Everyone knows what is interesting: salient locations which should be fixated. J. Vis. 9, 1–22 (2009)

    Article  Google Scholar 

  14. Chikkerur, S., Serre, T., Tan, C., Poggio, T.: What and where: a Bayesian inference theory of attention. Vis. Res. 50, 2233–2247 (2010)

    Article  Google Scholar 

  15. Mahadevan, V., Vasconcelos, N.: Spatiotemporal saliency in dynamic scenes. IEEE Trans. Pattern Anal. Mach. Intell. 32, 171–177 (2010)

    Article  Google Scholar 

  16. Wolfe, J., Horowitz, T.S.: Visual search. Scholarpedia 3, 3325 (2008)

    Article  Google Scholar 

  17. Lederman, S.J., Klatzky, R.L.: Relative availability of surface and object properties during early haptic processing. J. Exp. Psychol. Hum. Percept. Perform. 23, 1680 (1997)

    Article  Google Scholar 

  18. Plaisier, M.A., Tiest, W.M.B., Kappers, A.M.: Haptic pop-out in a hand sweep. Acta Psychol. (Amst.) 128, 368–377 (2008)

    Article  Google Scholar 

  19. van Polanen, V., Bergmann Tiest, W.M., Kappers, A.M.: Haptic pop-out of movable stimuli. Atten. Percept. Psychophys. 74, 204–215 (2012)

    Article  Google Scholar 

  20. Grunwald, M., Muniyandi, M., Kim, H., Kim, J., Krause, F., Mueller, S., Srinivasan, M.A.: Human haptic perception is interrupted by explorative stops of milliseconds. Front. Psychol. 5, 292 (2014)

    Article  Google Scholar 

  21. Morash, V.S.: Systematic movements in haptic search: spirals, zigzags, and parallel sweeps. IEEE Trans. Haptics 9, 100–110 (2016)

    Article  Google Scholar 

  22. Sobel, I.: An isotropic 3 × 3 image gradient operator. Machine Vision for Three-Dimensional Scenes, pp. 376–379 (1990)

    Google Scholar 

  23. Hsiao, S.S., Lane, J., Fitzgerald, P.: Representation of orientation in the somatosensory system. Behav. Brain Res. 135, 93–103 (2002)

    Article  Google Scholar 

  24. Johansson, R.S., Landstro, U., Lundstro, R.: Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements. Brain Res. 244, 17–25 (1982)

    Article  Google Scholar 

  25. Kovács, I., Fehér, Á.: Non-Fourier information in bandpass noise patterns. Vis. Res. 37, 1167–1175 (1997)

    Article  Google Scholar 

  26. Seebeck, A.: Beobachtungen über einige Bedingungen der Entstehung von Tönen. Ann. Phys. 129, 417–436 (1841)

    Article  Google Scholar 

  27. Plaisier, M.A., Tiest, W.M.B., Kappers, A.M.: Salient features in 3-D haptic shape perception. Atten. Percept. Psychophys. 71, 421–430 (2009)

    Article  Google Scholar 

  28. van Polanen, V., Tiest, W.M.B., Kappers, A.M.: Integration and disruption effects of shape and texture in haptic search. PLoS One 8, e70255 (2013)

    Article  Google Scholar 

  29. Plaisier, M.A., Kappers, A.M.L.: Cold objects pop out! In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds.) EuroHaptics 2010. LNCS, vol. 6192, pp. 219–224. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14075-4_31

    Chapter  Google Scholar 

  30. van Polanen, V., Bergmann Tiest, W.M., Kappers, A.M.: Haptic search for hard and soft spheres. PLoS One 7, e45298 (2012)

    Article  Google Scholar 

  31. Kienzle, W., Franz, M.O., Schölkopf, B., Wichmann, F.A.: Center-surround patterns emerge as optimal predictors for human saccade targets. J. Vis. 9, 1–15 (2009)

    Article  Google Scholar 

  32. Wang, W., Shen, J., Shao, L.: Video salient object detection via fully convolutional networks. IEEE Trans. Image Process. 27, 38–49 (2018)

    Article  MathSciNet  Google Scholar 

  33. Kruthiventi, S.S., Ayush, K., Babu, R.V.: Deepfix: a fully convolutional neural network for predicting human eye fixations. IEEE Trans. Image Process. 26, 4446–4456 (2017)

    Article  MathSciNet  Google Scholar 

  34. Ballard, D.H., Hayhoe, M.M.: Modelling the role of task in the control of gaze. Vis. Cogn. 17, 1185–1204 (2009)

    Article  Google Scholar 

  35. Tatler, B.W., Hayhoe, M.M., Land, M.F., Ballard, D.H.: Eye guidance in natural vision: reinterpreting salience. J. Vis. 11, 1–23 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Metzger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Metzger, A., Toscani, M., Valsecchi, M., Drewing, K. (2018). Haptic Saliency Model for Rigid Textured Surfaces. In: Prattichizzo, D., Shinoda, H., Tan, H., Ruffaldi, E., Frisoli, A. (eds) Haptics: Science, Technology, and Applications. EuroHaptics 2018. Lecture Notes in Computer Science(), vol 10893. Springer, Cham. https://doi.org/10.1007/978-3-319-93445-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93445-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93444-0

  • Online ISBN: 978-3-319-93445-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics