Skip to main content

Robust 3D Mesh Watermarking Scheme for an Anti-Collusion Fingerprint Code

  • Conference paper
  • First Online:
Information Security Applications (WISA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10763))

Included in the following conference series:

  • 1024 Accesses

Abstract

Collusion attack is one of the techniques used for unauthorized removal of embedded marks. In this paper, we propose a robust 3D mesh fingerprinting scheme for an anti-collusion code. In contrast to the existing robust mesh watermarking which provides unsuitable primitives for anti-collusion code, the proposed method has well-operated capacity to carry the anti-collusion fingerprint code. In order to minimize the detection error, we also modeled the response of the detector and herein present optimized thresholds for our method. Based on the experiments, the proposed method outperformed conventional robust mesh watermarking against collusion attack in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alface, P.R., Macq, B., Cayre, F.: Blind and robust watermarking of 3D models: how to withstand the cropping attack? In: 2007 IEEE International Conference on Image Processing, ICIP 2007, vol. 5, p. V-465. IEEE (2007)

    Google Scholar 

  2. Bollobás, B.: Modern Graph Theory, vol. 184. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-0619-4

    Book  MATH  Google Scholar 

  3. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theor. 44(5), 1897–1905 (1998)

    Article  MathSciNet  Google Scholar 

  4. Celik, M.U., Sharma, G., et al.: Collusion-resilient fingerprinting using random pre-warping. In: 2003 International Conference on Image Processing, Proceedings, ICIP 2003, vol. 1, p. I-509. IEEE (2003)

    Google Scholar 

  5. Cho, J.W., Prost, R., Jung, H.Y.: An oblivious watermarking for 3-D polygonal meshes using distribution of vertex norms. IEEE Trans. Sig. Process. 55(1), 142–155 (2007)

    Article  MathSciNet  Google Scholar 

  6. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Technical report, Paris, France (1996)

    Google Scholar 

  7. Clatworthy, W.H., Cameron, J.M., Speckman, J.A.: Tables of Two-Associate-Class Partially Balanced Designs, vol. 63. US Government Printing Office, Washington (1973)

    Google Scholar 

  8. Hou, J.U., Kim, D.G., Choi, S., Lee, H.K.: 3D print-scan resilient watermarking using a histogram-based circular shift coding structure. In: Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, pp. 115–121. ACM (2015)

    Google Scholar 

  9. InKoo, K., Sinha, K., Lee, H.K.: New digital fingerprint code construction scheme using group-divisible design. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89(12), 3732–3735 (2006)

    Google Scholar 

  10. Kang, I.K., Lee, C.H., Lee, H.Y., Kim, J.T., Lee, H.K.: Averaging attack resilient video fingerprinting. In: 2005 IEEE International Symposium on Circuits and Systems, ISCAS 2005, pp. 5529–5532. IEEE (2005)

    Google Scholar 

  11. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 279–286. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  12. Ohbuchi, R., Takahashi, S., Miyazawa, T., Mukaiyama, A.: Watermarking 3D polygonal meshes in the mesh spectral domain. In: Graphics Interface. vol. 2001, pp. 9–17. Citeseer (2001)

    Google Scholar 

  13. Peyré, G.: The numerical tours of signal processing - advanced computational signal and image processing. IEEE Computing in Science and Engineering 13(4), 94–97 (2011). http://hal.archives-ouvertes.fr/hal-00519521/

    Article  Google Scholar 

  14. Stinson, D.R., Wei, R.: Combinatorial properties and constructions of traceability schemes and frameproof codes. SIAM J. Discrete Math. 11(1), 41–53 (1998)

    Article  MathSciNet  Google Scholar 

  15. Tardos, G.: Optimal probabilistic fingerprint codes. J. ACM (JACM) 55(2), 10 (2008)

    Article  MathSciNet  Google Scholar 

  16. Trappe, W., Wu, M., Wang, Z., Liu, K.: Anti-collusion fingerprinting for multimedia. IEEE Trans. Sig. Process. 51(4), 1069–1087 (2003)

    Article  MathSciNet  Google Scholar 

  17. Uccheddu, F., Kuo, C.C.J., Barni, M.: Anticollusion watermarking of 3D meshes by pre-warping. In: Electronic Imaging 2008, p. 68190S. International Society for Optics and Photonics (2008)

    Google Scholar 

  18. Wang, K., Lavoué, G., Denis, F., Baskurt, A., He, X.: A benchmark for 3D mesh watermarking. In: Proceeding of the IEEE International Conference on Shape Modeling and Applications, pp. 231–235 (2010)

    Google Scholar 

  19. Wang, K., Lavoué, G., Denis, F., Baskurt, A.: Technical section: robust and blind mesh watermarking based on volume moments. Comput. Graph. 35(1), 1–19 (2011)

    Article  Google Scholar 

  20. Zhu, X., Chen, C.W.: A collusion resilient key management scheme for multi-dimensional scalable media access control. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 2769–2772, September 2011

    Google Scholar 

Download references

Acknowledgement

This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFCIT1402-05. The work of Jong-Uk Hou was supported by a Global PH.D Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015H1A2A1030715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung-Kyu Lee .

Editor information

Editors and Affiliations

6 Appendix

6 Appendix

In this appendix, we focus on mathematical derivation, in order to provide the threshold value \(\tau _b\) illustrated in Fig. 1(c). From Eq. 14, \(\tau _b\) is value that makes the derivative of \(e_1+e_2\) by t to be zero.

$$\begin{aligned} \frac{de_1}{dt}= \left( \frac{1}{n}\right) ^n \cdot f ( t | 1 , \sigma ^2 ) \end{aligned}$$
(15)
$$\begin{aligned} \frac{de_2}{dt}= -\sum _{k=0}^{n-1} \left( \left( {\begin{array}{c}n\\ k\end{array}}\right) \frac{1}{n}^k (1- \frac{1}{n})^{n-k} \cdot f ( t | \frac{k}{n} , \sigma ^2 ) \right) \end{aligned}$$
(16)

Substitute \(\left( {\begin{array}{c}n\\ k\end{array}}\right) \frac{1}{n}^k (1- \frac{1}{n})^{n-k}\) to \(\alpha _k\) for \(k=1\) to n.

$$\begin{aligned} \frac{de_1+de_2}{dt} = \alpha _n \cdot f ( t | 1 , \sigma ^2 ) - \left( \sum _{k=0}^{n-1} \alpha _k \cdot f ( t | \frac{k}{n} , \sigma ^2 ) \right) \end{aligned}$$
(17)
$$\begin{aligned} = \frac{1}{\sqrt{2\pi }\sigma } \cdot \left( \alpha _n \cdot e^{- \frac{(t-1)^2}{2\sigma ^2}} - \left( \sum _{k=0}^{n-1} \alpha _k \cdot e^{-\frac{(t-\frac{k}{n})^2}{2\sigma ^2}} \right) \right) \end{aligned}$$
(18)
$$\begin{aligned} =\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{t^2}{2\sigma ^2}} \cdot \left( \alpha _n e^{\frac{2t-1}{2\sigma ^2}} - \left( \sum _{k=0}^{n-1} \alpha _k e^{\frac{\frac{2k}{n}t-\frac{k^2}{n^2}}{2\sigma ^2}} \right) \right) \end{aligned}$$
(19)

Substitute \(e^{\frac{t}{n\sigma ^2}}\) to x and \(\alpha _k e^{-\frac{k^2}{2n^2\sigma ^2}}\) to \(\beta _k\) for \(k=1\) to n.

$$\begin{aligned} =\frac{1}{\sqrt{2\pi }\sigma } e^{-\frac{t^2}{2\sigma ^2}} \cdot \left( \beta _n x^n - \sum _{k=0}^{n-1} \beta _k x^k \right) \end{aligned}$$
(20)

Therefore, the value \(\tau _b\) that minimizes \(e_1+e_2\) can be derived from solving following polynomial of degree n.

$$\begin{aligned} \beta _n x^n - \sum _{k=0}^{n-1} \beta _k x^k=0 \end{aligned}$$
(21)

Finally, we can get \(\tau _b\) by using solution of (Eq. 21)

$$\begin{aligned} \tau _b= n \cdot \sigma ^2 \cdot ln \left( x \right) \end{aligned}$$
(22)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, JU., Yu, IJ., Song, HJ., Lee, HK. (2018). Robust 3D Mesh Watermarking Scheme for an Anti-Collusion Fingerprint Code. In: Kang, B., Kim, T. (eds) Information Security Applications. WISA 2017. Lecture Notes in Computer Science(), vol 10763. Springer, Cham. https://doi.org/10.1007/978-3-319-93563-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93563-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93562-1

  • Online ISBN: 978-3-319-93563-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics