Skip to main content

Reusable Fuzzy Extractor from LWE

  • Conference paper
  • First Online:
Book cover Information Security and Privacy (ACISP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10946))

Included in the following conference series:

Abstract

Fuzzy extractor converts the reading of a noisy non-uniform source to a reproducible and almost uniform output \(\mathsf {R}\). The output \(\mathsf {R}\) in turn is used in some cryptographic system as a secret key. To enable multiple extractions of keys \(\mathsf {R}_1, \mathsf {R}_2, \ldots , \mathsf {R}_\rho \) from the same noisy non-uniform source and applications of different \(\mathsf {R}_i\), the concept of reusable fuzzy extractor is proposed to guarantee the pseudorandomness of \(\mathsf {R}_i\) even conditioned on other extracted keys \(\mathsf {R}_j\) (from the same source).

    In this work, we construct a reusable fuzzy extractor from the Learning With Errors (LWE) assumption. Our reusable fuzzy extractor provides resilience to linear fraction of errors. Moreover, our construction is simple and efficient and imposes no special requirement on the statistical structure of the multiple readings of the source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  2. Alamélou, Q., Berthier, P.E., Cachet, C., Cauchie, S., Fuller, B., Gaborit, P., Simhadri, S.: Pseudoentropic isometries: a new framework for fuzzy extractor reusability (2016). http://eprint.iacr.org/2016/1100

  3. Apon, D., Cho, C., Eldefrawy, K., Katz, J.: Efficient, reusable fuzzy extractors from LWE. In: Dolev, S., Lodha, S. (eds.) CSCML 2017. LNCS, vol. 10332, pp. 1–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60080-2_1

    Chapter  Google Scholar 

  4. Bennett, C.H., Brassard, G., Robert, J.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210–229 (1988). https://doi.org/10.1137/0217014

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanton, M., Aliasgari, M.: On the (non-)reusability of fuzzy sketches and extractors and security in the computational setting. In: Lopez, J., Samarati, P. (eds.) SECRYPT 2011, pp. 68–77. SciTePress (2011)

    Google Scholar 

  6. Blanton, M., Aliasgari, M.: Analysis of reusability of secure sketches and fuzzy extractors. IEEE Trans. Inf. Forensics Secur. 8(9), 1433–1445 (2013). https://doi.org/10.1109/TIFS.2013.2272786

    Article  Google Scholar 

  7. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Atluri, V., Pfitzmann, B., McDaniel, P.D. (eds.) CCS 2004, pp. 82–91. ACM, New York (2004). https://doi.org/10.1145/1030083.1030096

    Chapter  Google Scholar 

  8. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors for low-entropy distributions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 117–146. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_5

    Chapter  Google Scholar 

  9. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31

    Chapter  Google Scholar 

  11. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_10

    Chapter  Google Scholar 

  12. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_31

    Chapter  Google Scholar 

  13. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM, New York (2005). https://doi.org/10.1145/1060590.1060603

    Chapter  Google Scholar 

  14. Regev, O.: The learning with errors problem (invited survey). In: CCC 2010, pp. 191–204. IEEE Computer Society (2010). https://doi.org/10.1109/CCC.2010.26

  15. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  16. Simoens, K., Tuyls, P., Preneel, B.: Privacy weaknesses in biometric sketches. In: 30th IEEE Symposium on Security and Privacy, pp. 188–203. IEEE Computer Society (2009). https://doi.org/10.1109/SP.2009.24

  17. Tanamoto, T., Yasuda, S., Takaya, S., Fujita, S.: Physically unclonable function using an initial waveform of ring oscillators. IEEE Trans. Circuits Syst. 64(7), 827–831 (2017). https://doi.org/10.1109/TCSII.2016.2602828

    Article  Google Scholar 

  18. Valsesia, D., Coluccia, G., Bianchi, T., Magli, E.: User authentication via PRNU-based physical unclonable functions. IEEE Trans. Inf. Forensics Secur. 12(8), 1941–1956 (2017). https://doi.org/10.1109/TIFS.2017.2697402

    Article  Google Scholar 

  19. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781316809976

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC No. 61672346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, Y., Liu, S. (2018). Reusable Fuzzy Extractor from LWE. In: Susilo, W., Yang, G. (eds) Information Security and Privacy. ACISP 2018. Lecture Notes in Computer Science(), vol 10946. Springer, Cham. https://doi.org/10.1007/978-3-319-93638-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93638-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93637-6

  • Online ISBN: 978-3-319-93638-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics