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Abstract. In PKC’08, Plantard, Susilo and Win proposed a lattice-
based signature scheme, whose security is based on the hardness of the
closest vector problem with the infinity norm (CVP∞). This signature
scheme was proposed as a countermeasure against the Nguyen-Regev
attack, which improves the security and the efficiency of the Goldreich,
Goldwasser and Halevi scheme (GGH). Furthermore, to resist potential
side channel attacks, the authors suggested modifying the determinis-
tic signing algorithm to be randomized. In this paper, we propose a
chosen message attack against the randomized version. Note that the
randomized signing algorithm will generate different signature vectors in
a relatively small cube for the same message, so the difference of any two
signature vectors will be relatively short lattice vector. Once collecting
enough such short difference vectors, we can recover the whole or the
partial secret key by lattice reduction algorithms, which implies that the
randomized version is insecure under the chosen message attack.

Keywords: Lattice-based cryptography, Signature schemes, Lattice re-
duction

1 Introduction

It is well known that classical cryptography is vulnerable to quantum
computers since Shor’s algorithm [19] will solve the integer factoriza-
tion and the logarithm discrete problems efficiently. This has motivated
the development of post-quantum cryptography, especially lattice-based
cryptosystems. In general, the security of lattice-based cryptosystems is
always related to some hard computational problems in lattices, such
as the Shortest Vector Problem (SVP) and the Closest Vector Problem
(CVP).

? This work was supported in part by the NNSF of China (No. 11201458, No. 11471314
and No. 61572490), and in part by the National Center for Mathematics and Inter-
disciplinary Sciences, CAS.
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As important cryptographic primitives, several lattice-based digital
signature schemes have been proposed in recent years, such as [8, 9, 17,
7, 5]. In 1997, Goldreich, Goldwasser and Halevi [8] proposed the GGH
signature scheme based on lattices, whose security is related to the hard-
ness of approximate CVP. In fact, GGH is not only a concrete signature
scheme, but also a general framework to construct lattice-based digital
signature schemes. The GGH framework consists of a good lattice basis
G, a bad basis B for the same lattice and a reduction algorithm as the
signing algorithm. Usually, the good basis is used as the secret key, with
which the reduction algorithm can efficiently output an approximation
for the closest vector of a target vector corresponding to the message.
Such approximation is the signature of the message. The bad basis is
published as the public key, with which one can check if the signature is
in the lattice and close enough to the target vector. In GGH scheme, they
used a nearly orthogonal basis G as the good basis, a random basis as
the bad basis B, and Babai’s rounding-off algorithm [2] as the reduction
algorithm.

Based on GGH framework, Hoffstein, Howgrave-Graham, Pipher, Sil-
verman, and Whyte [10] presented the NTRUSign as a more efficient
lattice-based signature scheme. They used some special short basis as a
good basis, a “random” basis as the bad basis B, and Babai’s rounding-off
algorithm as the reduction algorithm.

However, Nguyen and Regev [16] proposed a clever method to recover
the secret key of the GGH signature scheme and NTRUSign by study-
ing the parallelepiped of the lattice. More precisely, by collecting enough
message-signature pairs, they can obtain many samples uniformly dis-
tributed in the parallelepiped due to Babai’s rounding-off algorithm em-
ployed as reduction algorithm in this two signature schemes. Then with
these samples, they can finally recover the parallelepiped which leaks the
good basis. They also pointed out that even taking Babai’s nearest plane
algorithm [2] as the signing algorithm, these two schemes are still in-
secure. Later, Ducas and Nguyen [6] proposed some method to analyze
some countermeasures against the Nguyen-Regev attack.

By the Nguyen-Regev attack, it seems that the security of GGH type
signature schemes depends heavily on the reduction algorithms. To resist
such attack, at least two different reduction algorithms have been pro-
posed. In 2008, Gentry, Peikert and Vaikuntanathan [7] presented a Gaus-
sian sample algorithm similar to [11]. Based on such a random vector-
sampling algorithm, Gentry, Peikert and Vaikuntanathan constructed a
signature scheme, with a short trap-door basis as the private key and a
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long basis as the public key. Since the lattice vectors outputted by the
new sampling algorithm do not reveal the trap-door, the signature scheme
of Gentry, Peikert and Vaikuntanathan can be proved to be secure under
the chosen message attack (CMA).

In 2008, Plantard, Susilo, and Win [17] proposed another signature
scheme at PKC’08 to resist the Nguyen-Regev attack. They employed a
special type of lattices as the good basis which has a basis that can be
written into the sum of a diagonal matrix and a ternary random matrix.
With such a basis, they proposed a reduction algorithm to reduce any
vector into a small cube. Since the cube is public and it seems hard to
recover the private basis from the cube, the authors claimed that their
scheme can resist the Nguyen-Regev attack well.

As pointed out by Plantard, Susilo, and Win, since their reduction
algorithm is deterministic, the scheme may suffer some potential side
channel attacks. To make the scheme more secure, they modified their
reduction algorithm to be randomized.

In this paper, we show that the randomized version of the PSW sig-
nature scheme is insecure under the CMA model. Simply speaking, note
that when we query the signing oracle with the single message m for many
times, we will usually obtain different signature vectors w1,w2, · · · ,wk

with k ≥ 2. Denote by H(m) the hash vector of the message m. Note
that, in the PSW scheme, the difference wi −H(m), 1 ≤ i ≤ k are all in
the given lattice. It is easy to see that wi −wj , 1 ≤ i < j ≤ k are all in
the lattice. Note that each signature wi is contained in a relatively small
cube, then their difference vectors wi −wj are relatively short. Once we
obtain many such difference vectors, the Z-linear combinations of these
vectors will span the given lattice with high probability. By using the
lattice reduction algorithms such as LLL [12] and BKZ [18, 4] to these
short difference vectors, we could obtain a much shorter basis, which may
leak the good basis in this signature scheme. In fact, we find that for
dimension less than 400, BKZ-20 will recover all or partial rows of the
good basis in our experiments.

To fix the randomized version of the PSW signature scheme, we will
give two methods as presented in [7]. The first method is to store the
message-signature pairs locally. When signing a message, we first check
whether the message is in storage or not. If the message is in storage, we
output the stored corresponding signature, otherwise, we apply the ran-
domized reduction algorithm to generate a signature. The second method
is using the randomized reduction algorithm to generate the signature for
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the hash value of a message and some additional random number instead
of the hash value of just the message.

Roadmap. The remainder of the paper is organized as follows. First we
present some notations and preliminaries on lattices and hard problems
in Section 2. Then we describe the Plantard, Susilo, and Win signature
scheme in Section 3. Finally we describe our attacks and some experimen-
tal results in detail in Section 4, and some strategies to fix the randomized
version of PSW signature scheme are discussed in Section 5.

2 Preliminaries

Denote by R, Z the real number field and the integer ring respectively.
For a vector v = (v1, v2, · · · , vn) ∈ Rn, denote by vi its i-th component
and denote by ‖v‖ =

√
v21 + v22 + · · ·+ v2n its length.

2.1 Lattices

A lattice Λ is a discrete subgroup of Rn. Equivalently, a lattice is a Z-
linear combinations of m linearly independent vectors in Rn. The set of
these linearly independent vectors is called a basis of Λ. Given a matrix
B ∈ Zm×n, we denote by Λ(B) the lattice spanned by the row vectors of
B. That is,

Λ(B) =
{ m∑
i=1

xibi|xi ∈ Z, 1 ≤ i ≤ m
}
,

where bi is the i-th row of B. If the rows of B are linearly independent,
we call B a basis of Λ(B). For a basis B, we denote by det (Λ(B)) the
determinant of the lattice Λ(B) as

√
det (BBT ).

A lattice Λ(B) may have many bases. If B is a nonsingular square
matrix with all entries in Z, then Λ(B) has a special basis in Hermite
Normal Form. In general, a nonsingular square matrix H = (hij) ∈ Zn×n
is in Hermite Normal Form if

1) hij = 0 for 1 ≤ j < i ≤ n;
2) hii > 0 for 1 ≤ i ≤ n;
3) 0 ≤ hij < hjj for 1 ≤ i < j ≤ n.

Hermite Normal Form of any integer matrix can be computed in polyno-
mial time, and Micciancio [14] suggested publishing the Hermite Normal
Form as the public key which will improve the security of some lattice-
based cryptosystems.
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2.2 Lattice problems and algorithms

In lattice theory, the Shortest Vector Problem (SVP) and the Closest
Vector Problem (CVP) are two famous computational problems which
have been proved to be NP-hard [3, 1]. Given a lattice basis B ∈ Zm×n,
the shortest vector problem aims to find a nonzero shortest vector in
Λ(B), and the closest vector problem aims to find the closest vector to a
target vector t ∈ Zn. We denote by λ1(Λ(B)) the length of the shortest
nonzero lattice vectors in the lattice Λ(B).

The approximation versions of SVP and CVP are usually used to
evaluate the security for lattice-based schemes. For the approximation of
SVP, we need to find a lattice vector v such that ‖v‖ ≤ γλ1, and for the
approximation of CVP, our aim is to find a lattice vector w satisfying
‖w − t‖ ≤ γminv∈Λ(B) ‖v − t‖ with γ ≥ 1.

Some polynomial-time algorithms have been presented to solve ap-
proximate SVP and approximate CVP with exponentially large factor
γ, such as LLL [12], BKZ [18, 4] for the approximate SVP and Babai’s
nearest plane algorithm [2] for approximate CVP.

LLL algorithm is a polynomial-time lattice reduction algorithm which
was presented in [12]. An important property of this algorithm is the
output vectors are relatively short. Furthermore, in practice, the output
of LLL algorithm is much better than the theoretical analysis.

Blockwise Korkine-Zolotarev (BKZ) algorithm [18, 4] is also a widely
used lattice reduction algorithm in the analysis for lattice-based cryp-
tosystems. In general, BKZ algorithm has an additional parameter β ≥ 2
as the block size. In the process of BKZ algorithm, a subalgorithm which
finds the shortest vector of the projective lattice with dimension β is called
at each iteration. Generally speaking, BKZ algorithm will cost more time
than LLL, but the output will be much shorter than that of LLL when β
becomes larger.

3 The PSW digital signature scheme

In PKC’08, Plantard, Susilo, and Win [17] proposed a new digital signa-
ture based on CVP∞, which was claimed to be a countermeasure against
the Nguyen-Regev attack.

3.1 The original signature scheme

The original PSW signature scheme consists of three main steps as the
following:
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Setup

1. Choose an integer n.

2. Compute a random matrix M ∈ {−1, 0, 1}n×n.

3. Compute d = b2ρ(M) + 1c and D = dIn, where ρ(M) is the maxi-
mum of the absolute value of the eigenvalues of M .

4. Compute the Hermite Normal Form H of the basis D −M .

5. The public key is (D,H), and the secret key is M .

To sign a message m ∈ {0, 1}∗, one does the following.

Sign

1. Compute the vector v = H(m) ∈ Zn where H is a hash function
which maps m to {x ∈ Zn||xi| < d2, 1 ≤ i ≤ n}.

2. By Algorithm 1, compute w as the signature of m.

Algorithm 1 Signing algorithm
Input: A vector v ∈ Zn, the matrix D and M obtained in the Setup step.
Output: A vector w ∈ Zn such that w ≡ v (mod Λ(D −M)) and |wi| < d for all

i = 1, 2, · · · , n.
1: w ← v
2: i← 1
3: k ← 0
4: while k < n do
5: k ← 0
6: q ← dwi

d
c;

7: wi ← wi − qd
8: for j ← 1 to n do
9: wi+j mod n ← wi+j mod n + qMi,i+j mod n

10: |wi+j mod n| < d
11: k ← k + 1
12: end for
13: i← i+ 1 mod n
14: end while
15: return w

To verify a message-signature pair (m,w), one does the following.

Verify

1. Check if |wi| < d, 1 ≤ i ≤ n.

2. Compute the vector H(m) ∈ Zn.

3. Check if the vector H(m)−w is in the lattice of basis H.



7

3.2 The randomized version of PSW signature scheme

As pointed out by Plantard, Susilo, and Win, since the reduction algo-
rithm is deterministic, the original PSW scheme may suffer some poten-
tial side channel attacks. To resist the potential side channel attacks, they
suggest using the following randomized algorithm (Algorithm 2) as the
signing algorithm.

Algorithm 2 Randomized signing algorithm
Input: A vector v ∈ Zn, the matrix D and M obtained in the Setup step.
Output: A vector w ∈ Zn such that w ≡ v (mod Λ(D −M)) and |wi| < d for all

i = 1, 2, · · · , n.
1: w ← v
2: i

$←− {1, 2, · · · , n}
3: k ← 0
4: while k < n do
5: k ← 0
6: q ← dwi

d
c;

7: wi ← wi − qd
8: for j ← 1 to n do
9: wi+j mod n ← wi+j mod n + qMi,i+j mod n

10: |wi+j mod n| < d
11: k ← k + 1
12: end for
13: i← i+ 1 mod n
14: end while
15: return w

4 The chosen message attack against the randomized
version of PSW scheme

4.1 Key idea of our chosen message attack

As we can see, in the randomized version of the PSW signature scheme,
the signature vectors for the same message may not be unique. Therefore,
in the CMA model, if we query the randomized signing oracle with the
same message m, we may obtain different signature vectors w1,w2, · · · ,wk

where k ≥ 2. Note that wi −H(m), 1 ≤ i ≤ k are all in the lattice, and
so are their difference vectors

(wi −H(m))− (wj −H(m)) = wi −wj ,

where 1 ≤ i ≤ j ≤ k.
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Since each component of wi is in (−d, d), we know that each compo-
nent of wi − wj is in (−2d, 2d). Since d ∈ Θ(

√
n) as stated in [17], the

lattice vectors wi −wj ’s are very short.

Once we obtain many such short difference vectors, the Z-linear com-
binations of these vectors will span the lattice Λ(D −M). By using the
lattice reduction algorithms such as LLL and BKZ to the set of short
generators, we expect to obtain a much shorter basis, which may leak the
private key.

We present the framework of our attack as the following:

1. Generate some messages m1,m2, · · · randomly;

2. For any message mj ∈ {m1,m2, · · · }, querying the signing oracle for
several times to obtain many different signatures {wj1,wj2, · · · ,wjk}
with k ≥ 2;

3. Collect enough difference vectors wji −wj1’s such that they can span
the lattice Λ(D −M). Denote by L the set of these wji −wj1’s;

4. Use lattice basis reduction algorithm to L to output a square matrix
LL, and expect to obtain some information about the private key.

4.2 Our strategy to collect the difference vectors

To collect the difference vectors, we have to decide how many messages
we will choose in Step 1 and how many signatures for one message we will
query with the oracle in Step 2. Below we give a very simple but efficient
strategy, that is, for one message we query as many different signatures
as possible and we choose as few messages as possible to satisfy Step 3.

Note that for every message, the signing algorithm (Algorithm 2) will
generate at most n different signatures since there are n choices for the
index i. Assume there were exactly n different signatures, then it is natural
to ask how many times we query the signing oracle to collect all these
signatures. Since every signature is uniformly randomly returned by the
oracle, by the classical result for Coupon Collector’s Problem [15], it can
be easily concluded that the expectation of this number is

n(1 +
1

2
+ · · ·+ 1

n
) = n lnn+ γn+

1

2
+O(

1

n
),

where γ ≈ 0.5772156649 is the Euler’s constant. Hence, we can query
one message for dn log ne times, and then we know that the probability

of collecting all the n signatures is greater than 1 − n−
1

ln 2
+1 [15]. When

n ≥ 100, this value is greater than 0.85, which is acceptable.
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Therefore, in our attack we query dn log ne signatures for each mes-
sage, and choose random messages until we collect enough difference vec-
tors, then applying LLL and BKZ to obtain a short basis for the lattice.

We present the attack as Algorithm 3.

Algorithm 3 Chosen message attack against the randomized version of
PSW scheme
Input: The public key H, the randomized signing oracle O and a message generator
G to generate the messages randomly.

Output: A set of short basis for Λ(H).
1: Let LL be a zero matrix of n× n
2: while detLL/detH ! = 1 and detLL/detH ! = −1 do
3: W = {}
4: m← G
5: for i← 1 to dn logne do
6: w ← O(m)
7: If w is not in W, append w to W
8: end for
9: Collect all w1 −wi, 1 ≤ i ≤ |W | to append to the matrix LL

10: LL← the last n rows of LLL(LL) (since LLL algorithm puts linearly indepen-
dent vectors in the last rows)

11: end while
12: B ← LatticeReduction(LL)
13: Check whether B leaks the private key or not.

4.3 Experimental Results

In our experiments, we used SageMath 7.5.1 [21] to implement our at-
tacks, and the LLL’s parameter is set to the default value. For BKZ
algorithm, we set the parameter “algorithm” as “NTL” to call the NTL
library [20] to implement this algorithm. All experiments were run on a
machine with Intel(R) Xeon(R) CPU E5-2620 v4 @2.1GHz.

We chose the dimension n to be 200, 300, 400, and for any dimen-
sion we chose 5 randomized generated instances. For the lattice reduction
algorithms, we used LLL algorithm, BKZ-10, and BKZ-20 respectively.
The results are listed in Table 1.
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Table 1. Experimental Results for Our Attack

dim 200 300 400

num 3 2 3 2 3 3 2 2 2 2 3 4 3 2 3
LLL A P(22) A A P(32) N N N N N N N N N N

BKZ-10 A A A A A N N P(3) N N N N N N N
BKZ-20 A A A A A A N A P(4) P(22) N P(2) N N N

1 dim: The dimension of the lattice Λ(D −M);
2 num: The number of messages we need to span the lattice
Λ(D −M);

3 N: The lattice reduction algorithm can not recover any rows
of the matrix D −M ;

4 A: The lattice reduction algorithm can recover all rows of
the matrix D −M ;

5 P: The lattice reduction algorithm can recover partial rows
of the matrix D−M , and the number in the bracket is the
number of rows we recovered.

We would like to point out a natural attempt to recover the rows of
D−M is by applying lattice basis reduction algorithm on the public key
H directly, since every row of D −M is very short. However, for just
dimension n = 165 in our experiments, we could not recover any row of
D −M when we even applied BKZ-20 on the public key H directly.

In contrast, with our attack, for the dimension n = 200, LLL algorithm
could recover all (or partial) rows of D −M , and BKZ-10 could recover
all the rows of D −M for our instances. For the dimension n = 300,
we could recover all rows of D −M in 2 instances and partial rows in 2
instances when BKZ-20 was used.

For the dimension n = 400, we just obtain partial rows in D −M
for only one instance with BKZ-20 algorithm. Employing BKZ algorithm
with bigger blocksize, we may obtain more rows.

However, we would like to point out that even only partial rows are
recovered, the randomized version of the PSW signature scheme is not
secure. Since the messages are all generated randomly, we may expect to
recover all the rows of the matrix D−M by repeating our attack several
times.

Remark 1. Once obtaining a short basis, we can also recover the matrix
M by finding some lattice vector close to (0, · · · , d, · · · , 0). Using some
strategies in [13] to solve the Bounded Distance Decoding (BDD) problem
may improve our results.
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Remark 2. We would like to point out that the strategy to collect the
difference vectors also plays an important role in our attack. Another
natural strategy is to query the signing oracle just twice for each message
and collect enough difference vectors to mount the attack. However, the
new stategy did not work so well as Algorithm 3. For dimension n = 200
and larger dimensions, we could never recover any rows of the matrix
D −M by using this strategy in our experiments.

5 Possible ways to fix the randomized version

There are two possible ways to fix the randomized version similar to the
strategies in [7].

The first way is to store the message-signature pairs locally, which
seems a bit impractical. In detail, once given a message m, we will modify
the Sign step as the following:

Sign
1. Check whether m has been signed or not.
2. If m is stored locally, return the locally stored signature w corre-

sponding to m.
3. Otherwise, use Algorithm 2 to output a signature w and store (m,w)

locally.

The second way is to add some random number to the hash function.
This strategy is usually used in the hash-then-sign schemes. Since the
original PSW scheme has no security proof and we do not know the exact
hardness of CVP∞ over the PSW instances, we can not present some
formal security proof for this fixed version, but just present it as the
following:

Sign
1. Choose r ← {0, 1}n at random.
2. Compute the vector v = H(m||r), where H maps (m||r) to the area

(−d2, d2)n.
3. Applying Algorithm 2, compute the signature w.

Once given the signature (m, r,w), we will modify the Verify step as
below.

Verify
1. Check if |wi| < d for 1 ≤ i ≤ n.
2. Compute the vector H(m||r).
3. Check whether the vector H(m||r)−w ∈ Λ(H) or not.
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6 Conclusions

In this paper, we show that the randomized PSW signature scheme is
not secure under the chosen message attack at least for dimension less
than or equal to 400. However, for the scheme with bigger dimension
which becomes less efficient apparently, it seems that we need the BKZ
algorithm with bigger blocksize to recover the private key. In fact, our
attack reveals that the storage of previous signature or the use of random
nonce employed in the randomized signature scheme is crucial.
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