Abstract
In PKC’08, Plantard, Susilo and Win proposed a lattice-based signature scheme, whose security is based on the hardness of the closest vector problem with the infinity norm (CVP\(_\infty \)). This signature scheme was proposed as a countermeasure against the Nguyen-Regev attack, which improves the security and the efficiency of the Goldreich, Goldwasser and Halevi scheme (GGH). Furthermore, to resist potential side channel attacks, the authors suggested modifying the deterministic signing algorithm to be randomized. In this paper, we propose a chosen message attack against the randomized version. Note that the randomized signing algorithm will generate different signature vectors in a relatively small cube for the same message, so the difference of any two signature vectors will be relatively short lattice vector. Once collecting enough such short difference vectors, we can recover the whole or the partial secret key by lattice reduction algorithms, which implies that the randomized version is insecure under the chosen message attack.
This work was supported in part by the NNSF of China (No. 61572490 and No. 11471314), and in part by the National Center for Mathematics and Interdisciplinary Sciences, CAS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract). In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 10–19. ACM, New York (1998). https://doi.org/10.1145/276698.276705
Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986). https://doi.org/10.1007/BF02579403
Boas, P.V.E.: Another NP-complete problem and the complexity of computing short vectors in lattices. Mathematics Department Report 81–04. University of Amsterdam (1981)
Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3
Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_2
Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_27
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York (2008). https://doi.org/10.1145/1374376.1374407
Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231
Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_9
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868
Klein, P.: Finding the closest lattice vector when it’s unusually close. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2000, pp. 937–941. Society for Industrial and Applied Mathematics, Philadelphia (2000). http://dl.acm.org/citation.cfm?id=338219.338661
Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 515–534 (1982). https://doi.org/10.1007/BF01457454
Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36095-4_19
Micciancio, D.: Improving lattice based cryptosystems using the Hermite normal form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2_11
Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, New York (2005)
Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995). https://doi.org/10.1145/211542.606546
Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_17
Plantard, T., Susilo, W., Win, K.T.: A digital signature scheme based on CVP\(_\infty \). In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 288–307. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1_17
Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66(1–3), 181–199 (1994). https://doi.org/10.1007/BF01581144
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE, Santa Fe, November 1994. https://doi.org/10.1109/SFCS.1994.365700
Shoup, V.: NTL: A library for doing number theory (2001). http://www.shoup.net/ntl
Stein, W., et al.: Sage Mathematics Software Version 7.5.1. The Sage Development Team (2017). http://www.sagemath.org
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Li, H., Liu, R., Nitaj, A., Pan, Y. (2018). Cryptanalysis of the Randomized Version of a Lattice-Based Signature Scheme from PKC’08. In: Susilo, W., Yang, G. (eds) Information Security and Privacy. ACISP 2018. Lecture Notes in Computer Science(), vol 10946. Springer, Cham. https://doi.org/10.1007/978-3-319-93638-3_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-93638-3_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93637-6
Online ISBN: 978-3-319-93638-3
eBook Packages: Computer ScienceComputer Science (R0)