Abstract
After the concept of a Fuzzy Extractor (FE) was first introduced by Dodis et al., it has been regarded as one of the candidate solutions for key management utilizing biometric data. With a noisy input such as biometrics, FE generates a public helper value and a random secret key which is reproducible given another input similar to the original input. However, “helper values” may cause some leakage of information when generated repeatedly by correlated inputs, thus reusability should be considered as an important property. Recently, Canetti et al. (Eurocrypt 2016) proposed a FE satisfying both reusability and robustness with inputs from low-entropy distributions. Their strategy, the so-called Sample-then-Lock method, is to sample many partial strings from a noisy input string and to lock one secret key with each partial string independently.
In this paper, modifying this reusable FE, we propose a new FE with size-reduced helper data hiring a threshold scheme. Our new FE also satisfies both reusability and robustness, and requires much less storage memory than the original. To show the advantages of this scheme, we analyze and compare our scheme with the original in concrete parameters of the biometric, IrisCode. As a result, on 1024-bit inputs, with false rejection rate 0.5 and error tolerance 0.25, while the original requires about 1 TB for each helper value, our scheme requires only 300 MB with an additional 1.35 GB of common data which can be used for all helper values.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The false rejection rate is the probability that the reproducing algorithm \({\mathsf {Rep}}\) fails to regenerate the secret value even though a legitimate input is given.
- 3.
We refers the formal definition of robustness to [11].
- 4.
One can also use SHA3 or other hash functions.
- 5.
We take \(\delta = 1/2\) for convenience. One can achieve \(\delta = 1/2^b\) increasing \(\ell \) to \(b\ell \).
- 6.
In fact, we should take into account the min-entropy of the partial biometric, but we will assume that the min-entropy is k for simplicity.
- 7.
In fact, we should take the size of nonce so that the resulting locker is \(\ell \)-composable, i.e., no collision occurs among \(\ell \) nonces. In our cases, 144 (= 224−80) bit is sufficient for the size of nonce.
- 8.
Canetti et al. [9] mentioned that with sophisticated samplers, one can decrease the required storage. However, it can only decrease the storage for index, and the storage for \({\mathsf {lock}}\)s can not be decreased.
- 9.
We can also consider a divisor d of \(n' \le n\), and follow the construction taking \(n'\) instead of n.
- 10.
For convenience, we only consider the partitions whose elements have the same cardinality. An analogous statement can be made for more general partitions.
- 11.
Note that, in (\(\tau , m\)) threshold scheme, the size of secret k is \(D(m_p-1)\) for some \(D \in \mathbb {Z}_{>0}\). We take D satisfying proper security.
- 12.
- 13.
Canetti et al.’s construction requires \(\ell \) or \(\ell \rho \) -composable digital lockers, and \(\ell \ge N(m+1)\) in our parameter settings.
- 14.
Since Time(\({\mathsf {RA}}\)) \(\approx \) Time(\({\mathsf {DA}}\)), maximal time of \({\mathsf {Rep}}\) is much bigger than that of \({\mathsf {Gen}}\), and we only consider the time of \({\mathsf {Rep}}\).
- 15.
The space for “Mat. for \({\mathsf {DA}}\)” is excluded since it is a common data for every users. It doesn’t affect the tendency in this graph overall.
References
Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03168-7_14
Kulkarni, R., Namboodiri, A.M.: Secure hamming distance based biometric authentication. In: International Conference on Biometrics, ICB 2013, pp. 1–6 (2013). https://doi.org/10.1109/ICB.2013.6613008
Karabat, C., Kiraz, M.S., Erdogan, H., Savas, E.: THRIVE: threshold homomorphic encryption based secure and privacy preserving biometric verification system. EURASIP J. Adv. Sig. Process. 2015, 71 (2015). https://doi.org/10.1186/s13634-015-0255-5
Cheon, J.H., Chung, H., Kim, M., Lee, K.: Ghostshell: secure biometric authentication using integrity-based homomorphic evaluations. IACR Cryptology ePrint Archive 2016, 484 (2016)
Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31
Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008). https://doi.org/10.1137/060651380
Apon, D., Cho, C., Eldefrawy, K., Katz, J.: Efficient, reusable fuzzy extractors from LWE. In: Dolev, S., Lodha, S. (eds.) CSCML 2017. LNCS, vol. 10332, pp. 1–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60080-2_1
Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_10
Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors for low-entropy distributions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 117–146. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_5
Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authentication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_9
Dodis, Y., Kanukurthi, B., Katz, J., Reyzin, L., Smith, A.D.: Robust fuzzy extractors and authenticated key agreement from close secrets. IEEE Trans. Inf. Theory 58(9), 6207–6222 (2012). https://doi.org/10.1109/TIT.2012.2200290
Shamir, A.: How to share a secret. Commun. ACM 11, 612–613 (1979). https://doi.org/10.1145/359168.359176
Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the AFIPS 1979 National Computer Conference, pp. 313–317 (1979). https://doi.org/10.1109/AFIPS.1979.98
Ishizu, H., Ogihara, T.: A study on long-term storage of electronic data. In: Proceedings of the IEICE General Conference, vol. D-9-10, no. 1, p. 125 (2004)
Fujii, Y.: A fast (2, n)-threshold scheme and its application. In: Proceedings of the CSS 2005, pp. 631–636 (2005)
Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast (3, n)-threshold secret sharing scheme using exclusive-OR operations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 91(1), 127–138 (2008). https://doi.org/10.1093/ietfec/e91-a.1.127
Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A New (k, n)-threshold secret sharing scheme and its extension. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 455–470. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85886-7_31
Canetti, R., Tauman Kalai, Y., Varia, M., Wichs, D.: On symmetric encryption and point obfuscation. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 52–71. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_4
Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 20–39. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_2
Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_28
Hollingsworth, K.P., Bowyer, K.W., Flynn, P.J.: Improved iris recognition through fusion of hamming distance and fragile bit distance. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2465–2476 (2011). https://doi.org/10.1109/TPAMI.2011.89
Daugman, J.: Probing the uniqueness and randomness of iriscodes: results from 200 billion iris pair comparisons. Proc. IEEE 94(11), 1927–1935 (2006). https://doi.org/10.1109/JPROC.2006.884092
Desoky, A.I., Ali, H.A., Abdel-Hamid, N.B.: Enhancing iris recognition system performance using templates fusion. Ain Shams Eng. J. 3(2), 133–140 (2012). https://doi.org/10.1109/ISSPIT.2010.5711758
Acknowledgements
The authors would like to thank the anonymous reviewers of ACISP 2018 for their valuable comments. This work were supported by Samsung Electronics, Co., Ltd. (No. 0536-20160013).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Cheon, J.H., Jeong, J., Kim, D., Lee, J. (2018). A Reusable Fuzzy Extractor with Practical Storage Size: Modifying Canetti et al.’s Construction. In: Susilo, W., Yang, G. (eds) Information Security and Privacy. ACISP 2018. Lecture Notes in Computer Science(), vol 10946. Springer, Cham. https://doi.org/10.1007/978-3-319-93638-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-93638-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93637-6
Online ISBN: 978-3-319-93638-3
eBook Packages: Computer ScienceComputer Science (R0)