Skip to main content

Z-Channel: Scalable and Efficient Scheme in Zerocash

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10946))

Included in the following conference series:

  • 2186 Accesses

Abstract

Decentralized ledger-based cryptocurrencies like Bitcoin present a way to construct payment systems without trusted banks. However, the anonymity of Bitcoin is fragile. Many altcoins and protocols are designed to improve Bitcoin on this issue, among which Zerocash is the first full-fledged anonymous ledger-based currency, using zero-knowledge proof, specifically zk-SNARK, to protect privacy. However, Zerocash suffers two problems: poor scalability and low efficiency. In this paper, we address the above issues by constructing a micropayment system in Zerocash called Z-Channel. First, we improve Zerocash to support multisignature and time lock functionalities, and prove that the reconstructed scheme is secure. Then we construct Z-Channel based on the improved Zerocash scheme. Our experiments demonstrate that Z-Channel significantly improves the scalability and reduces the confirmation time for Zerocash payments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The work of BOLT (Blind Off-chain Lightweight Transactions) [26] mentions Zerocash, claiming that if a BOLT is built on Zerocash, it would provide better channel privacy than built on other currencies. However, BOLT focuses on solving the linkability issue in channels, and does not specify the concrete construction over Zerocash.

  2. 2.

    We neglect the transaction fees.

  3. 3.

    This procedure may be executed distributedly, where the input \(\mathsf {sk}_{\mathsf {dst},i}\) is shared by more than one parties, and \(\sigma _{i}\) is synthesized from the shared signatures.

  4. 4.

    In Z-Channel, the public output is always zero, so we neglect it in the sequel.

  5. 5.

    When the channel is already established, to abort means executing the \(\mathsf {Close}\) protocol.

References

  1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  2. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable blockchain protocol. In: 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16), pp. 45–59. USENIX Association (2016)

    Google Scholar 

  3. King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake. self-published paper, 19 August 2012

    Google Scholar 

  4. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015 Part II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10

    Chapter  Google Scholar 

  5. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin in the presence of adversaries. In: Proceedings of WEIS. Citeseer (2013)

    Google Scholar 

  6. Sompolinsky, Y., Zohar, A.: Accelerating Bitcoin’s transaction processing. Fast money grows on trees, not chains. IACR Cryptology ePrint Archive 2013/881 (2013)

    Google Scholar 

  7. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151 (2014)

    Google Scholar 

  8. Valenta, L., Rowan, B.: Blindcoin: blinded, accountable mixes for Bitcoin. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 112–126. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9_9

    Chapter  Google Scholar 

  9. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 839–858, IEEE (2016)

    Google Scholar 

  10. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK: research perspectives and challenges for Bitcoin and cryptocurrencies. In: 2015 IEEE Symposium on Security and Privacy (SP), pp. 104–121 IEEE (2015)

    Google Scholar 

  11. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: Altshuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and Privacy in Social Networks, pp. 197–223. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4614-4139-7_10

    Chapter  Google Scholar 

  12. Heilman, E., Baldimtsi, F., Alshenibr, L., Scafuro, A., Goldberg, S.: TumbleBit: an untrusted tumbler for Bitcoin-compatible anonymous payments. IACR Cryptology ePrint Archive 2016/575 (2016)

    Google Scholar 

  13. Maxwell, G.: Coinswap: transaction graph disjoint trustless trading (2013)

    Google Scholar 

  14. Ziegeldorf, J.H., Grossmann, F., Henze, M., Inden, N., Wehrle, K.: CoinParty: secure multi-party mixing of Bitcoins. In: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, pp. 75–86. ACM (2015)

    Google Scholar 

  15. Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin mixing for Bitcoin. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014 Part II. LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_20

    Chapter  Google Scholar 

  16. Maxwell, G.: CoinJoin: Bitcoin privacy for the real world. In: Post on Bitcoin Forum (2013)

    Google Scholar 

  17. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from Bitcoin. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 397–411. IEEE (2013)

    Google Scholar 

  18. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin: anonymity for Bitcoin with accountable mixes. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_31

    Chapter  Google Scholar 

  19. Danezis, G., Fournet, C., Kohlweiss, M., Parno, B.: Pinocchio coin: building zerocoin from a succinct pairing-based proof system. In: Proceedings of the First ACM workshop on Language support for privacy-enhancing technologies, pp. 27–30. ACM (2013)

    Google Scholar 

  20. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: decentralized anonymous payments from Bitcoin. In: IEEE Symposium on Security and Privacy, pp. 459–474 (2014)

    Google Scholar 

  21. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013 Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_6

    Chapter  MATH  Google Scholar 

  22. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37

    Chapter  Google Scholar 

  23. Andresen, G.: Blocksize Economics (2014). bitcoinfoundation.org

  24. Jedusor, T.: Mimblewimble (2016). Defunct hidden service

    Google Scholar 

  25. Poon, J., Dryja, T.: The Bitcoin lightning network: scalable off-chain instant payments (2016)

    Google Scholar 

  26. Green, M., Miers, I.: Bolt: anonymous payment channels for decentralized currencies. Cryptology ePrint Archive, Report 2016/701 (2016). http://eprint.iacr.org/2016/701

  27. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive arguments for a von neumann architecture. IACR Cryptology ePrint Archive 2013/879 (2013)

    Google Scholar 

  28. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_21

    Chapter  Google Scholar 

  29. Zhang, Y., Long, Y., Liu, Z., Liu, Z., Gu, D.: Z-channel: scalable and efficient scheme in zerocash. Cryptology ePrint Archive, Report 2017/684 (2017). https://eprint.iacr.org/2017/684

  30. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification (2017)

    Google Scholar 

Download references

Acknowledgement

The authors are supported by the National Natural Science Foundation of China (Grant No. 61572318, 61672339, 61672347).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Long , Zhen Liu , Zhiqiang Liu or Dawu Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Long, Y., Liu, Z., Liu, Z., Gu, D. (2018). Z-Channel: Scalable and Efficient Scheme in Zerocash. In: Susilo, W., Yang, G. (eds) Information Security and Privacy. ACISP 2018. Lecture Notes in Computer Science(), vol 10946. Springer, Cham. https://doi.org/10.1007/978-3-319-93638-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93638-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93637-6

  • Online ISBN: 978-3-319-93638-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics