Abstract
Decentralized ledger-based cryptocurrencies like Bitcoin present a way to construct payment systems without trusted banks. However, the anonymity of Bitcoin is fragile. Many altcoins and protocols are designed to improve Bitcoin on this issue, among which Zerocash is the first full-fledged anonymous ledger-based currency, using zero-knowledge proof, specifically zk-SNARK, to protect privacy. However, Zerocash suffers two problems: poor scalability and low efficiency. In this paper, we address the above issues by constructing a micropayment system in Zerocash called Z-Channel. First, we improve Zerocash to support multisignature and time lock functionalities, and prove that the reconstructed scheme is secure. Then we construct Z-Channel based on the improved Zerocash scheme. Our experiments demonstrate that Z-Channel significantly improves the scalability and reduces the confirmation time for Zerocash payments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The work of BOLT (Blind Off-chain Lightweight Transactions) [26] mentions Zerocash, claiming that if a BOLT is built on Zerocash, it would provide better channel privacy than built on other currencies. However, BOLT focuses on solving the linkability issue in channels, and does not specify the concrete construction over Zerocash.
- 2.
We neglect the transaction fees.
- 3.
This procedure may be executed distributedly, where the input \(\mathsf {sk}_{\mathsf {dst},i}\) is shared by more than one parties, and \(\sigma _{i}\) is synthesized from the shared signatures.
- 4.
In Z-Channel, the public output is always zero, so we neglect it in the sequel.
- 5.
When the channel is already established, to abort means executing the \(\mathsf {Close}\) protocol.
References
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable blockchain protocol. In: 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16), pp. 45–59. USENIX Association (2016)
King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake. self-published paper, 19 August 2012
Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015 Part II. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10
Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin in the presence of adversaries. In: Proceedings of WEIS. Citeseer (2013)
Sompolinsky, Y., Zohar, A.: Accelerating Bitcoin’s transaction processing. Fast money grows on trees, not chains. IACR Cryptology ePrint Archive 2013/881 (2013)
Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151 (2014)
Valenta, L., Rowan, B.: Blindcoin: blinded, accountable mixes for Bitcoin. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 112–126. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9_9
Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 839–858, IEEE (2016)
Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK: research perspectives and challenges for Bitcoin and cryptocurrencies. In: 2015 IEEE Symposium on Security and Privacy (SP), pp. 104–121 IEEE (2015)
Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: Altshuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and Privacy in Social Networks, pp. 197–223. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4614-4139-7_10
Heilman, E., Baldimtsi, F., Alshenibr, L., Scafuro, A., Goldberg, S.: TumbleBit: an untrusted tumbler for Bitcoin-compatible anonymous payments. IACR Cryptology ePrint Archive 2016/575 (2016)
Maxwell, G.: Coinswap: transaction graph disjoint trustless trading (2013)
Ziegeldorf, J.H., Grossmann, F., Henze, M., Inden, N., Wehrle, K.: CoinParty: secure multi-party mixing of Bitcoins. In: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, pp. 75–86. ACM (2015)
Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin mixing for Bitcoin. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014 Part II. LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_20
Maxwell, G.: CoinJoin: Bitcoin privacy for the real world. In: Post on Bitcoin Forum (2013)
Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from Bitcoin. In: 2013 IEEE Symposium on Security and Privacy (SP), pp. 397–411. IEEE (2013)
Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin: anonymity for Bitcoin with accountable mixes. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_31
Danezis, G., Fournet, C., Kohlweiss, M., Parno, B.: Pinocchio coin: building zerocoin from a succinct pairing-based proof system. In: Proceedings of the First ACM workshop on Language support for privacy-enhancing technologies, pp. 27–30. ACM (2013)
Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.: Zerocash: decentralized anonymous payments from Bitcoin. In: IEEE Symposium on Security and Privacy, pp. 459–474 (2014)
Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013 Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_6
Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37
Andresen, G.: Blocksize Economics (2014). bitcoinfoundation.org
Jedusor, T.: Mimblewimble (2016). Defunct hidden service
Poon, J., Dryja, T.: The Bitcoin lightning network: scalable off-chain instant payments (2016)
Green, M., Miers, I.: Bolt: anonymous payment channels for decentralized currencies. Cryptology ePrint Archive, Report 2016/701 (2016). http://eprint.iacr.org/2016/701
Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive arguments for a von neumann architecture. IACR Cryptology ePrint Archive 2013/879 (2013)
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_21
Zhang, Y., Long, Y., Liu, Z., Liu, Z., Gu, D.: Z-channel: scalable and efficient scheme in zerocash. Cryptology ePrint Archive, Report 2017/684 (2017). https://eprint.iacr.org/2017/684
Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification (2017)
Acknowledgement
The authors are supported by the National Natural Science Foundation of China (Grant No. 61572318, 61672339, 61672347).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Zhang, Y., Long, Y., Liu, Z., Liu, Z., Gu, D. (2018). Z-Channel: Scalable and Efficient Scheme in Zerocash. In: Susilo, W., Yang, G. (eds) Information Security and Privacy. ACISP 2018. Lecture Notes in Computer Science(), vol 10946. Springer, Cham. https://doi.org/10.1007/978-3-319-93638-3_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-93638-3_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93637-6
Online ISBN: 978-3-319-93638-3
eBook Packages: Computer ScienceComputer Science (R0)