Skip to main content

Control Variates as a Variance Reduction Technique for Random Projections

  • Conference paper
  • First Online:
Pattern Recognition Applications and Methods (ICPRAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10857))

  • 662 Accesses

Abstract

Control variates are used as a variance reduction technique in Monte Carlo integration, making use of positively correlated variables to bring about a reduction of variance for estimated data. By storing the marginal norms of our data, we can use control variates to reduce the variance of random projection estimates. We demonstrate the use of control variates in estimating the Euclidean distance and inner product between pairs of vectors, and give some insight on our control variate correction. Finally, we demonstrate our variance reduction through experiments on synthetic data and the arcene, colon, kos, nips datasets. We hope that our work provides a starting point for other control variate techniques in further random projection applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66(4), 671–687 (2003). https://doi.org/10.1016/S0022-0000(03)00025-4

    Article  MathSciNet  MATH  Google Scholar 

  2. Ailon, N., Chazelle, B.: The fast Johnson-Lindenstrauss transform and approximate nearest neighbors. SIAM J. Comput. 39(1), 302–322 (2009). https://doi.org/10.1137/060673096

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D., Levine, A.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  4. Boutsidis, C., Gittens, A.: Improved matrix algorithms via the subsampled randomized hadamard transform. CoRR abs/1204.0062 (2012). http://arxiv.org/abs/1204.0062

  5. Boutsidis, C., Zouzias, A., Drineas, P.: Random projections for k-means clustering. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp. 298–306. Curran Associates, Inc. (2010). http://papers.nips.cc/paper/3901-random-projections-for-k-means-clustering.pdf

  6. Fern, X.Z., Brodley, C.E.: Random projection for high dimensional data clustering: a cluster ensemble approach, pp. 186–193 (2003)

    Google Scholar 

  7. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the NIPS 2003 feature selection challenge. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 545–552. MIT Press (2005). http://papers.nips.cc/paper/2728-result-analysis-of-the-nips-2003-feature-selection-challenge.pdf

  8. Kang, K., Hooker, G.: Random projections with control variates. In: Proceedings of ICPRAM, February 2016

    Google Scholar 

  9. Li, P., Church, K.W.: A sketch algorithm for estimating two-way and multi-way associations. Comput. Linguist. 33(3), 305–354 (2007). https://doi.org/10.1162/coli.2007.33.3.305

    Article  MATH  Google Scholar 

  10. Li, P., Hastie, T.J., Church, K.W.: Improving random projections using marginal information. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 635–649. Springer, Heidelberg (2006). https://doi.org/10.1007/11776420_46. http://dblp.uni-trier.de/db/conf/colt/colt2006.html#LiHC06

    Chapter  Google Scholar 

  11. Li, P., Hastie, T.J., Church, K.W.: Very sparse random projections. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2006, pp. 287–296. ACM, New York (2006). https://doi.org/10.1145/1150402.1150436

  12. Liberty, E., Ailon, N., Singer, A.: Dense fast random projections and lean walsh transforms. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX/RANDOM 2008. LNCS, vol. 5171, pp. 512–522. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85363-3_40. http://dblp.uni-trier.de/db/conf/approx/approx2008.html#LibertyAS08

    Chapter  MATH  Google Scholar 

  13. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  14. Mardia, K.V., Kent, J.T., Bibby, J.M.: Multivariate Analysis. Academic Press, Cambridge (1979)

    MATH  Google Scholar 

  15. Paul, S., Boutsidis, C., Magdon-Ismail, M., Drineas, P.: Random projections for support vector machines. CoRR abs/1211.6085 (2012). http://arxiv.org/abs/1211.6085

  16. Perrone, V., Jenkins, P.A., Spano, D., Teh, Y.W.: Poisson random fields for dynamic feature models (2016). arXiv e-prints: arXiv:1611.07460

  17. Ross, S.M.: Simulation, 4th edn. Academic Press Inc., Orlando (2006)

    MATH  Google Scholar 

  18. Vempala, S.S.: The Random Projection Method. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 65, pp. 101–105. American Mathematical Society, Providence (2004). http://opac.inria.fr/record=b1101689

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keegan Kang or Giles Hooker .

Editor information

Editors and Affiliations

Appendix

Appendix

We use the following lemma for ease of computation of first and second moments.

Lemma 2

Suppose we have a sequence of terms \(\{t_i\}_{i=1}^p = \{a_ir_i\}_{i=1}^p\) for \(\mathbf{a} = (a_1,a_2,\ldots , a_p)\), \(\{s_i\}_{i=1}^p = \{b_ir_i\}_{i=1}^p\) for \(\mathbf{b} = (b_1,b_2,\ldots , b_p)\) and \(r_i\) i.i.d. random variables with \(\mathbb E[r_i] = 0\), \(\mathbb E[r_i^2] = 1\) and finite third, and fourth moments, denoted by \(\mu _3, \mu _4\) respectively. Then:

$$\begin{aligned} \mathbb E\left[ \left( \sum _{i=1}^p t_i\right) ^2\right]&= \sum _{i=1}^p a_i^2 = \Vert \mathbf{a}\Vert _2^2\end{aligned}$$
(59)
$$\begin{aligned} \mathbb E\left[ \left( \sum _{i=1}^p t_i\right) ^4\right]&= \mu _4 \sum _{i=1}^p a_i^4 + 6 \sum _{u=1}^{p-1}\sum _{v=u+1}^p a_u^2a_v^2 \end{aligned}$$
(60)
$$\begin{aligned} \mathbb E\left[ \left( \sum _{i=1}^p s_i\right) \left( \sum _{i=1}^p t_i\right) \right]&= \sum _{i=1}^p a_ib_i = \langle \mathbf{a}, \mathbf{b} \rangle \end{aligned}$$
(61)
$$\begin{aligned} \mathbb E\left[ \left( \sum _{i=1}^p s_i\right) ^2\left( \sum _{i=1}^p t_i\right) ^2\right]&= \sum _{i=1}^p a_i^2b_i^2 + \sum _{i \ne j}a_i^2b_j^2 + 4\sum _{u=1}^{p-1}\sum _{v=u+1}^p a_ub_ua_vb_v \end{aligned}$$
(62)

The motivation for this lemma is that we do expansion of terms of the above four forms to prove our theorems.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kang, K., Hooker, G. (2018). Control Variates as a Variance Reduction Technique for Random Projections. In: De Marsico, M., di Baja, G., Fred, A. (eds) Pattern Recognition Applications and Methods. ICPRAM 2017. Lecture Notes in Computer Science(), vol 10857. Springer, Cham. https://doi.org/10.1007/978-3-319-93647-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93647-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93646-8

  • Online ISBN: 978-3-319-93647-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics