Skip to main content

Traffic Flow Estimation for Urban Roads Based on Crowdsourced Data and Machine Learning Principles

  • Conference paper
  • First Online:
Intelligent Transport Systems – From Research and Development to the Market Uptake (INTSYS 2017)

Abstract

The congestion in urban road networks are common problem across all urban centers. Understanding the traffic flow across the road segments are necessary to provide viable solutions, but a very expensive task specially for developing countries. This paper proposes an economical approach for a directional flow prediction model for urban road based on Google Distance Matrix API data, archived traffic flow data, and geometric data. Data gathered was aggregated in space and time as attributes to the model estimation. Deviating from traditional probability estimation, a K- Nearest Neighbour regression method was used in the analysis. The model is validated using a test dataset which showed a root mean square error and a mean absolute error of prediction as 9.479 and 2.318, which suggest that with the use of travel time and speed data gathered from Google Distance matrix API is possible to estimate lane flow when road geometry is defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dai, X., Fu, R., Lin, Y., et al.: DeepTrend: A Deep Hierarchical Neural Network for Traffic Flow Prediction (2017)

    Google Scholar 

  2. Japan International Cooperation Agency; Oriental Consultants Co., LTD. Urban Transport System Development Project For Colombo Metropolitan Region

    Google Scholar 

  3. Amini, S., Gerostathopoulos, I., Prehofer, C.: Big Data Analytics Architecture for Real-Time Traffic Control

    Google Scholar 

  4. Chatzimilioudis, G., Konstantinidis, A., Laoudias, C., Zeinalipour-yazti, D.: Crowdsourcing with smartphones. IEEE Internet Comput. 16(5), 1–7 (2012). https://doi.org/10.1109/MIC.2012.70

    Article  Google Scholar 

  5. Russell, R.: How does Google maps calculate your ETA. In: Forbes (2013). https://www.forbes.com/sites/quora/2013/07/31/how-does-google-maps-calculate-your-eta/#241f6c01466e

  6. Helbing, D.: From microscopic to macroscopic traffic models. In: Parisi, J., Müller, S.C., Zimmermann, W. (eds.) A Perspect. Look Non-linear Media, vol. 503, pp. 122–139. Springer, Heidelberg (2012). https://doi.org/10.1007/BFb0104959

    Chapter  Google Scholar 

  7. Chandra, S.: Capacity estimation procedure for two-lane roads under mixed traffic conditions. J. Indian Roads Congr. i, 139–167 (2004)

    Google Scholar 

  8. Antoniou, C., Koutsopoulos, H.: Estimation of traffic dynamics models with machine-learning methods. Transp. Res. Rec. J. Transp. Res. Board 1965, 103–111 (2006). https://doi.org/10.3141/1965-11

    Article  Google Scholar 

  9. Zhao, W., McCormack, E., Dailey, D.J., Scharnhorst, E.: Using truck probe GPS data to identify and rank roadway bottlenecks. J Transp. Eng. 139, 1–8 (2013). https://doi.org/10.1061/(ASCE)TE.1943-5436.0000444

    Article  Google Scholar 

  10. Janecek, A., Hummel, KA., Valerio, D., et al.: Cellular data meet vehicular traffic theory: location area updates and cell transitions for travel time estimation. In: ACM Conference on Ubiquitous Computing, pp. 361–370 (2012)

    Google Scholar 

  11. D’Andrea, E., Marcelloni, F.: Detection of traffic congestion and incidents from GPS trace analysis. Expert Syst. Appl. 73, 43–56 (2017). https://doi.org/10.1016/j.eswa.2016.12.018

    Article  Google Scholar 

  12. Google. The bright side of sitting in traffic: Crowdsourcing road congestion data. Googleblog (2009)

    Google Scholar 

  13. Cheng, A., Jiang, X., Li, Y., et al.: Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method. Phys. A Stat. Mech. Appl. 466, 422–434 (2017). https://doi.org/10.1016/j.physa.2016.09.041

    Article  Google Scholar 

  14. Laboshin, L.U., Lukashin, A.A., Zaborovsky, V.S.: The Big Data approach to collecting and analyzing traffic data in large scale networks. Procedia Comput. Sci. 103, 536–542 (2017). https://doi.org/10.1016/j.procs.2017.01.048

    Article  Google Scholar 

  15. Xu, C., Li, Z., Wang, W.: Short-term traffic flow prediction using a methodology based on autoregressive integrated moving average and genetic programming. Transport 31, 343–358 (2016). https://doi.org/10.3846/16484142.2016.1212734

    Article  Google Scholar 

  16. Elsner, J.B., Tsonis, A.A.: Non-linear Prediction, Chaos, and Noise. Bull. Am. Meteorol. Soc. 73, 49–60 (1992). https://doi.org/10.1175/1520-0477(1992)0732.0.CO;2

    Article  Google Scholar 

  17. Bao, J., Chen, W., Xiang, Z.: Prediction of traffic flow based on cellular automaton. In: 2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration, pp. 88–92 (2015). https://doi.org/10.1109/iciicii.2015.107

  18. Shang, Q., Lin, C., Yang, Z., et al.: A hybrid short-term traffic flow prediction model based on singular spectrum analysis and kernel extreme learning machine. PLoS ONE 11, 1–25 (2016). https://doi.org/10.1371/journal.pone.0161259

    Article  Google Scholar 

  19. Zhang, L., Liu, Q., Yang, W., et al.: An improved K-nearest neighbour model for short-term traffic flow prediction. Procedia – Soc. Behav. Sci. 96, 653–662 (2013). https://doi.org/10.1016/j.sbspro.2013.08.076

    Article  Google Scholar 

  20. Castro-Neto, M., Jeong, Y.-S., Jeong, M.-K., Han, L.D.: Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl. 36, 6164–6173 (2009). https://doi.org/10.1016/j.eswa.2008.07.069

    Article  Google Scholar 

  21. Zhao, J., Sun, S.: High-order Gaussian process dynamical models for traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 17, 2014–2019 (2016). https://doi.org/10.1109/TITS.2016.2515105

    Article  Google Scholar 

  22. IBM Corp. IBM SPSS Modeler for Windows. (2016)

    Google Scholar 

  23. Gunter, U., Onder, I.: Forecasting city arrivals with Google Analytics. Ann. Tour Res. 61, 199–212 (2016). https://doi.org/10.1016/j.annals.2016.10.007

    Article  Google Scholar 

  24. Rajapaksha, R.P.G.K.S., Bandara, J.M.S.J.: Effect of traffic composition on capacity of two-way two-lane, roads under mix traffic condition. In: International Conference on Advances in Highway Engineering & Transportation Systems, vol. 20 (2017)

    Google Scholar 

  25. Zhong, J., Ling, S.: Key factors of k-nearest neighbours nonparametric regression in short-time traffic flow forecasting. In: Qi, E., Shen, J., Dou, R. (eds.) Proceedings of the 21st International Conference on Industrial Engineering and Engineering Management 2014. PICIEEM, pp. 9–12. Atlantis Press, Paris (2015). https://doi.org/10.2991/978-94-6239-102-4_2

    Chapter  Google Scholar 

  26. Wendler, T., Gröttrup, S.: Data Mining with SPSS Modeler. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28709-6

    Book  Google Scholar 

  27. Kumarage, S.P., De Silva, D., Bandara, J.M.S.J.: Travel time estimation based on dynamic traffic data and machine learning principles. In: IESE Annual Sessions 2017, pp. 1135–1142 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakitha P. Kumarage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumarage, S.P., Rajapaksha, R.P.G.K.S., De Silva, D., Bandara, J.M.S.J. (2018). Traffic Flow Estimation for Urban Roads Based on Crowdsourced Data and Machine Learning Principles. In: Kováčiková, T., Buzna, Ľ., Pourhashem, G., Lugano, G., Cornet, Y., Lugano, N. (eds) Intelligent Transport Systems – From Research and Development to the Market Uptake. INTSYS 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-319-93710-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93710-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93709-0

  • Online ISBN: 978-3-319-93710-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics