Skip to main content

An Approximate Message Passing Approach for DOA Estimation in Phase Noisy Environments

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10891))

Abstract

In underwater acoustics, wave propagation can be greatly disrupted by random fluctuations in the ocean environment. In particular, phase measurements of the complex pressure field can be heavily noisy and can defeat conventional direction-of-arrival (DOA) estimation algorithms.

In this paper, we propose a new Bayesian approach to address such phase noise through an informative prior on the measurements. This is combined to a sparse assumption on the directions of arrival to achieve a highly-resolved estimation and integrated into a message-propagation algorithm referred to as the “paSAMP” algorithm (for Phase-Aware Swept Approximate Message Passing). Our algorithm can be seen as an extension of the recent phase-retrieval algorithm “prSAMP” to phase-aware priors.

Experiments on simulated data mimicking real environments demonstrate that paSAMP outperform conventional approaches (e.g. classic beamforming) in terms of DOA estimation. paSAMP also proves to be more robust to additive noise than other variational methods (e.g. based on mean-field approximation).

G. Beaumont—This work has been supported by the DGA MRIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We assume the Bernoulli parameter to be the same for each \(m\in \{1,\ldots ,M\}\).

  2. 2.

    Note in addition that the DOA estimation problem involves a highly-correlated matrix. This further motivates a SwAMP-like approach.

  3. 3.

    We refer the reader to papers [9, 14] for a more general presentation of the approach.

  4. 4.

    We justify and develop this point in the technical report [23].

References

  1. Johnson, D.H., Dudgeon, D.E.: Array Signal Processing: Concepts and Techniques. P T R Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276–280 (1986)

    Article  Google Scholar 

  3. Xenaki, A., Gerstoft, P., Mosegaard, K.: Compressive beamforming. J. Acoust. Soc. Am. 136, 260–271 (2014)

    Article  Google Scholar 

  4. Dashen, R., Flatté, S.M., Munk, W.H., Watson, K.M., Zachariasen, F.: Sound Transmission Through a Fluctuating Ocean. Cambridge University Press, London (2010)

    Google Scholar 

  5. Colosi, J.A.: Sound Propogation Through the Stochastic Ocean. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  6. Cheinet, S., Ehrhardt, L., Juve, D., Blanc-Benon, P.: Unified modeling of turbulence effects on sound propagation. J. Acoust. Soc. Am. 132, 2198–2209 (2012)

    Article  Google Scholar 

  7. Ehrhardt, L., Cheinet, S., Juve, D., Blanc-Benon, P.: Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation. J. Acoust. Soc. Am. 133, 1922–1933 (2013)

    Article  Google Scholar 

  8. Dremeau, A., Krzakala F.: Phase recovery from a Bayesian point of view: the variational approach. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3661–3665 (2015)

    Google Scholar 

  9. Rajaei, B., Gigan, S., Krzakala, F., Daudet, L.: Robust phase retrieval with the swept approximate message passing (prSAMP) algorithm. IPOL 7, 43–55 (2016)

    Article  MathSciNet  Google Scholar 

  10. Metzler, C.A., Sharma, M.K., Nagesh, S., Baraniuk, R.G., Cossairt, O., Veeraraghavan, A.: Coherent inverse scattering via transmission matrices: efficient phase retrieval algorithms and a public dataset. In: Proceedings of the IEEE International Conference on Computational Photography, pp. 1–16 (2017)

    Google Scholar 

  11. Waldspurger, I., d’Aspremont, A., Mallat, S.: Phase recovery, maxcut and complex semidefinite programming. Math. Program. 149, 47–81 (2015)

    Article  MathSciNet  Google Scholar 

  12. Dremeau, A., Herzet, C.: DOA estimation in structured phase noisy environments: technical report (2016)

    Google Scholar 

  13. Krzakala, F., Manoel, A., Tramel, E.W., Zdeborova, L.: Variational free energies for compressed sensing. In: 2014 Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp. 1499–1503 (2014)

    Google Scholar 

  14. Manoel, A., Krzakala, F., Tramel, E., Zdeborova, L.: Swept approximate message passing for sparse estimation. In: Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 1123–1132 (2015)

    Google Scholar 

  15. Vila, J., Schniter, P.: Expectation-maximization Bernoulli-Gaussian approximate message passing. In: Proceedings of the Signals, Systems and Computers (ASILOMAR), pp. 799–803 (2011)

    Google Scholar 

  16. Soussen, C., Idier, J., Brie, D., Duan, J.: From Bernoulli-Gaussian deconvolution to sparse signal restoration. IEEE Trans. Signal Process. 59, 4572–4584 (2011)

    Article  MathSciNet  Google Scholar 

  17. Rangan, S., Schniter, P., Fletcher, A.K. : Vector approximate message passing. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp. 1588–1592 (2017)

    Google Scholar 

  18. Caltagirone, F., Zdeborova, L., Krzakala, F.: On convergence of approximate message passing. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT), pp. 1812–1816 (2014)

    Google Scholar 

  19. Rangan, S.: Generalized approximate message passing for estimation with random linear mixing. In: Proceedings of the IEEE Internationnal Symposium on Information Theory (ISIT), pp. 2168–2172 (2011)

    Google Scholar 

  20. Schniter, P., Rangan, S., Fletcher, A.K.: Vector approximate message passing for the generalized linear model. In: Asilomar Conference on Signals, Systems and Computers, pp. 1525–1529 (2016)

    Google Scholar 

  21. Schniter, P., Rangan, S.: Compressive phase retrieval via generalized approximate message passing. IEEE Trans. Signal Process. 63, 1043–1055 (2015)

    Article  MathSciNet  Google Scholar 

  22. Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley, Chichester (2009)

    MATH  Google Scholar 

  23. Beaumont, G., Fablet, R., Dremeau, A.: DOA estimation in fluctuating environments: an approximate message-passing approach. Technical report (2018). https://hal.archives-ouvertes.fr/hal-01624855v4/document

Download references

Acknowledgment

The authors thank Boshra Rajaei for sharing her MATLAB implementation of the prSAMP algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Beaumont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beaumont, G., Fablet, R., Drémeau, A. (2018). An Approximate Message Passing Approach for DOA Estimation in Phase Noisy Environments. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93764-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93763-2

  • Online ISBN: 978-3-319-93764-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics