Abstract
Long-lasting periodic sensory stimulation is increasingly used in neuroscience to study, using electroencephalography (EEG), the cortical processes underlying perception in different modalities. This kind of stimulation can elicit synchronized periodic activity at the stimulation frequency in neuronal populations responding to the stimulus, referred to as a steady-state response (SSR). While the frequency analysis of EEG recordings is particularly well suited to capture this activity, it is limited by the intrinsic noisy nature of EEG signals and the low signal-to-noise ratio (SNR) of some responses. This paper compares and adapts spatial filtering methods for periodicity maximization to enhance the SNR of periodic EEG responses, a key condition to generalize their use as a research or clinical tool. This approach uncovers both temporal dynamics and spatial topographic patterns of SSRs, and is validated using EEG data from 15 healthy subjects exposed to periodic cool and warm stimuli.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K.R.: Single-trial analysis and classification of ERP components-a tutorial. NeuroImage 56(2), 814–825 (2011)
Colon, E., Legrain, V., Mouraux, A.: Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain. Neurophysiol. Clin./Clin. Neurophysiol. 42(5), 315–323 (2012)
Colon, E., Liberati, G., Mouraux, A.: EEG frequency tagging using ultra-slow periodic heat stimulation of the skin reveals cortical activity specifically related to C fiber thermonociceptors. NeuroImage 146, 266–274 (2017)
Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)
Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004)
Hüllemann, P., Nerdal, A., Binder, A., Helfert, S., Reimer, M., Baron, R.: Cold-evoked potentials-ready for clinical use? Eur. J. Pain 20(10), 1730–1740 (2016)
Krzanowski, W.: Principles of Multivariate Analysis, vol. 23. OUP, Oxford (2000)
Mouraux, A., Iannetti, G.D., Colon, E., Nozaradan, S., Legrain, V., Plaghki, L.: Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J. Neurosci. 31(16), 6079–6087 (2011)
Nakanishi, M., Wang, Y., Wang, Y.T., Mitsukura, Y., Jung, T.P.: A high-speed brain speller using steady-state visual evoked potentials. Int. J. Neural Syst. 24(06), 1450019 (2014)
Pfurtscheller, G., Da Silva, F.L.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)
Samadi, S., Amini, L., Cosandier-Rimélé, D., Soltanian-Zadeh, H., Jutten, C.: Reference-based source separation method for identification of brain regions involved in a reference state from intracerebral EEG. IEEE Trans. Biomed. Eng. 60(7), 1983–1992 (2013)
Sameni, R., Jutten, C., Shamsollahi, M.B.: Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans. Biomed. Eng. 55(8), 1935–1940 (2008)
Sameni, R., Jutten, C., Shamsollahi, M.B.: A deflation procedure for subspace decomposition. IEEE Trans. Sig. Process. 58(4), 2363–2374 (2010)
Saul, L.K., Allen, J.B.: Periodic component analysis: an eigenvalue method for representing periodic structure in speech. In: Advances in Neural Information Processing Systems, pp. 807–813 (2001)
Wittevrongel, B., Van Hulle, M.M.: Frequency-and phase encoded SSVEP using spatiotemporal beamforming. PLoS One 11(8), e0159988 (2016)
Acknowledgments
DM and CdB are Research Fellows of the Fonds de la Recherche Scientifique - FNRS. The authors gratefully thank Prof. Christian Jutten for insightful discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Mulders, D., de Bodt, C., Lejeune, N., Mouraux, A., Verleysen, M. (2018). Spatial Filtering of EEG Signals to Identify Periodic Brain Activity Patterns. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-93764-9_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93763-2
Online ISBN: 978-3-319-93764-9
eBook Packages: Computer ScienceComputer Science (R0)