Skip to main content

Spatial Filtering of EEG Signals to Identify Periodic Brain Activity Patterns

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10891))

Abstract

Long-lasting periodic sensory stimulation is increasingly used in neuroscience to study, using electroencephalography (EEG), the cortical processes underlying perception in different modalities. This kind of stimulation can elicit synchronized periodic activity at the stimulation frequency in neuronal populations responding to the stimulus, referred to as a steady-state response (SSR). While the frequency analysis of EEG recordings is particularly well suited to capture this activity, it is limited by the intrinsic noisy nature of EEG signals and the low signal-to-noise ratio (SNR) of some responses. This paper compares and adapts spatial filtering methods for periodicity maximization to enhance the SNR of periodic EEG responses, a key condition to generalize their use as a research or clinical tool. This approach uncovers both temporal dynamics and spatial topographic patterns of SSRs, and is validated using EEG data from 15 healthy subjects exposed to periodic cool and warm stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K.R.: Single-trial analysis and classification of ERP components-a tutorial. NeuroImage 56(2), 814–825 (2011)

    Article  Google Scholar 

  2. Colon, E., Legrain, V., Mouraux, A.: Steady-state evoked potentials to study the processing of tactile and nociceptive somatosensory input in the human brain. Neurophysiol. Clin./Clin. Neurophysiol. 42(5), 315–323 (2012)

    Article  Google Scholar 

  3. Colon, E., Liberati, G., Mouraux, A.: EEG frequency tagging using ultra-slow periodic heat stimulation of the skin reveals cortical activity specifically related to C fiber thermonociceptors. NeuroImage 146, 266–274 (2017)

    Article  Google Scholar 

  4. Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)

    MATH  Google Scholar 

  5. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004)

    Article  Google Scholar 

  6. Hüllemann, P., Nerdal, A., Binder, A., Helfert, S., Reimer, M., Baron, R.: Cold-evoked potentials-ready for clinical use? Eur. J. Pain 20(10), 1730–1740 (2016)

    Article  Google Scholar 

  7. Krzanowski, W.: Principles of Multivariate Analysis, vol. 23. OUP, Oxford (2000)

    MATH  Google Scholar 

  8. Mouraux, A., Iannetti, G.D., Colon, E., Nozaradan, S., Legrain, V., Plaghki, L.: Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors. J. Neurosci. 31(16), 6079–6087 (2011)

    Article  Google Scholar 

  9. Nakanishi, M., Wang, Y., Wang, Y.T., Mitsukura, Y., Jung, T.P.: A high-speed brain speller using steady-state visual evoked potentials. Int. J. Neural Syst. 24(06), 1450019 (2014)

    Article  Google Scholar 

  10. Pfurtscheller, G., Da Silva, F.L.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Article  Google Scholar 

  11. Samadi, S., Amini, L., Cosandier-Rimélé, D., Soltanian-Zadeh, H., Jutten, C.: Reference-based source separation method for identification of brain regions involved in a reference state from intracerebral EEG. IEEE Trans. Biomed. Eng. 60(7), 1983–1992 (2013)

    Article  Google Scholar 

  12. Sameni, R., Jutten, C., Shamsollahi, M.B.: Multichannel electrocardiogram decomposition using periodic component analysis. IEEE Trans. Biomed. Eng. 55(8), 1935–1940 (2008)

    Article  Google Scholar 

  13. Sameni, R., Jutten, C., Shamsollahi, M.B.: A deflation procedure for subspace decomposition. IEEE Trans. Sig. Process. 58(4), 2363–2374 (2010)

    Article  MathSciNet  Google Scholar 

  14. Saul, L.K., Allen, J.B.: Periodic component analysis: an eigenvalue method for representing periodic structure in speech. In: Advances in Neural Information Processing Systems, pp. 807–813 (2001)

    Google Scholar 

  15. Wittevrongel, B., Van Hulle, M.M.: Frequency-and phase encoded SSVEP using spatiotemporal beamforming. PLoS One 11(8), e0159988 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

DM and CdB are Research Fellows of the Fonds de la Recherche Scientifique - FNRS. The authors gratefully thank Prof. Christian Jutten for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dounia Mulders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mulders, D., de Bodt, C., Lejeune, N., Mouraux, A., Verleysen, M. (2018). Spatial Filtering of EEG Signals to Identify Periodic Brain Activity Patterns. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93764-9_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93763-2

  • Online ISBN: 978-3-319-93764-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics