Skip to main content

SONIC-MAN: A Distributed Protocol for Dynamic Community Detection and Management

  • Conference paper
  • First Online:
Distributed Applications and Interoperable Systems (DAIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10853))

Abstract

The study of complex networks has acquired great importance during the last years because of the diffusion of several phenomena which can be described by these networks. Community detection is one of the most investigated problem in this area, however only a few solutions for detecting communities in a distributed and dynamic environment have been presented. In this paper we propose SONIC-MAN, a distributed protocol to detect and manage communities in a peer-to-peer dynamic environment. Our approach is particularly targeted to distributed online social networks and its main goal is to discover communities in the ego-network of the users. SONIC-MAN is based on a Temporal Trade-off approach and exploits a set of super-peers for the management of the communities. The paper presents a set of evaluations proving that SONIC-MAN is able to detect dynamic communities in a distributed setting and to return results close a centralized approach based on the same basic algorithm for community discovering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.facebook.com/SocialCircles-244719909045196/.

References

  1. Aynaud, T., Fleury, E., Guillaume, J.L., Wang, Q.: Communities in evolving networks: definitions, detection, and analysis techniques. In: Mukherjee, A., Choudhury, M., Peruani, F., Ganguly, N., Mitra, B. (eds.) Dynamics On and Of Complex Networks, Volume 2. Modeling and Simulation in Science, Engineering and Technology, pp. 159–200. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6729-8_9

    Chapter  Google Scholar 

  2. Cazabet, R., Amblard, F.: Dynamic community detection. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, pp. 404–414. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-6170-8_383

    Chapter  Google Scholar 

  3. Clementi, A.E.F., Ianni, M.D., Gambosi, G., Natale, E., Silvestri, R.: Distributed community detection in dynamic graphs. CoRR abs/1302.5607 (2013)

    Google Scholar 

  4. Coscia, M., Giannotti, F., Pedreschi, D.: A classification for community discovery methods in complex networks. Stat. Anal. Data Min. ASA Data Sci. J. 4(5), 512–546 (2011)

    Article  MathSciNet  Google Scholar 

  5. Datta, A., Buchegger, S., Vu, L.H., Strufe, T., Rzadca, K.: Decentralized online social networks. In: Furht, B. (ed.) Handbook of Social Network Technologies and Applications, pp. 349–378. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-7142-5_17

    Chapter  Google Scholar 

  6. De Salve, A., Dondio, M., Guidi, B., Ricci, L.: The impact of user’s availability on On-line Ego Networks. Comput. Commun. 73(PB), 211–218 (2016)

    Article  Google Scholar 

  7. De Salve, A., Guidi, B., Ricci, L.: Evaluation of structural and temporal properties of ego networks for data availability in DOSNS. Mobile Netw. Appl. 23(1), 155–166 (2018)

    Article  Google Scholar 

  8. Everett, M., Borgatti, S.: Ego network betweenness. Soc. Netw. 27, 31–38 (2005)

    Article  Google Scholar 

  9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MathSciNet  Google Scholar 

  10. Fortunato, S.: Community detection in graphs. CoRR abs/0906.0612 (2009)

    Google Scholar 

  11. Guidi, B., Amft, T., Salve, A.D., Graffi, K., Ricci, L.: Didusonet: a P2P architecture for distributed dunbar-based social networks. Peer-to-Peer Netw. Appl. 9(6), 1177–1194 (2016)

    Article  Google Scholar 

  12. Guidi, B., Michienzi, A., Rossetti, G.: Dynamic community analysis in decentralized online social networks. In: Heras, D.B., Bougé, L. (eds.) Euro-Par 2017. LNCS, vol. 10659, pp. 517–528. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75178-8_42

    Chapter  Google Scholar 

  13. Herbiet, G.J., Bouvry, P.: Sharc: Community-based partitioning for mobile ad hoc networks using neighborhood similarity. In: 2010 IEEE International Symposium on A World of Wireless, Mobile and Multimedia Networks, pp. 1–9 (2010)

    Google Scholar 

  14. Hui, P., Yoneki, E., Chan, S.Y., Crowcroft, J.: Distributed community detection in delay tolerant networks. In: Proceedings of 2nd ACM/IEEE International Workshop on Mobility in the Evolving Internet Architecture, pp. 1–8 (2007)

    Google Scholar 

  15. Montresor, A., Jelasity, M.: PeerSim: a scalable P2P simulator. In: Proceedings of the 9th International Conference on Peer-to-Peer (P2P 2009), pp. 99–100, September 2009

    Google Scholar 

  16. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446(7136), 664–667 (2007)

    Article  Google Scholar 

  17. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)

    Article  Google Scholar 

  18. Ramaswamy, L., Gedik, B., Liu, L.: A distributed approach to node clustering in decentralized peer-to-peer networks. IEEE Trans. Parallel Distrib. Syst. 16(9), 814–829 (2005)

    Article  Google Scholar 

  19. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. Technical report (2017)

    Google Scholar 

  20. Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F.: Tiles: an online algorithm for community discovery in dynamic social networks. Mach. Learn. 106(8), 1213–1241 (2017)

    Article  MathSciNet  Google Scholar 

  21. Takaffoli, M., Sangi, F., Fagnan, J., Zaïane, O.R.: MODEC-modeling and detecting evolutions of communities. In: 5th International Conference on Weblogs and Social Media (ICWSM), pp. 30–41. AAAI (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Guidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guidi, B., Michienzi, A., Ricci, L. (2018). SONIC-MAN: A Distributed Protocol for Dynamic Community Detection and Management. In: Bonomi, S., Rivière, E. (eds) Distributed Applications and Interoperable Systems. DAIS 2018. Lecture Notes in Computer Science(), vol 10853. Springer, Cham. https://doi.org/10.1007/978-3-319-93767-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93767-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93766-3

  • Online ISBN: 978-3-319-93767-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics