Abstract
Quality estimation is an important field of machine translation evaluation. There are automatic evaluation methods for machine translation that use reference translations created by human translators. The creation of these reference translations is very expensive and time-consuming. Furthermore, these automatic evaluation methods are not real-time and the correlation between the results of these methods and that of human evaluation is very low in the case of translations from English to Hungarian. The other kind of evaluation approach is quality estimation. These methods address the task by estimating the quality of translations as a prediction task for which features are extracted from only the source and translated sentences. In this study, we describe an English-Hungarian quality estimation system that can predict quality of translated sentences. Furthermore, using the predicted the quality scores, we combined different kinds of machine translated outputs to improve the translation accuracy. For this task, we created a training corpus. Last, but not least, using the quality estimation method we created a monolingual quality estimation system for a psycholinguistically motivated parser. In this paper we summarize our results and show some partial results of ongoing projects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beck, D., Shah, K., Cohn, T., Specia, L.: SHEF-Lite: when less is more for translation quality estimation. In: Proceedings of the Workshop on Machine Translation (WMT), August 2013
Csendes, D., Csirik, J., Gyimóthy, T., Kocsor, A.: The szeged treebank. In: Matoušek, V., Mautner, P., Pavelka, T. (eds.) TSD 2005. LNCS (LNAI), vol. 3658, pp. 123–131. Springer, Heidelberg (2005). https://doi.org/10.1007/11551874_16
Gonzalez-Agirre, A., Laparra, E., Rigau, G.: Multilingual central repository version 3.0. In: Calzolari, N., Choukri, K., Declerck, T., Dogan, M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. (eds.) LREC, pp. 2525–2529. European Language Resources Association (ELRA) (2012)
Halácsy, P., Kornai, A., Németh, L., Sas, B., Varga, D., Váradi, T., Vonyó, A.: A Hunglish korpusz és szótár. In: III. Magyar Számítógépes Nyelvészeti Konferencia. Szegedi Egyetem (2005)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009). http://doi.acm.org/10.1145/1656274.1656278
Indig, B., Vadász, N., Kalivoda, Á.: Decreasing entropy: how wide to open the window? In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M.A. (eds.) TPNC 2016. LNCS, vol. 10071, pp. 137–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49001-4_11
Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., Herbst, E.: Moses: Open source toolkit for statistical machine translation. In: Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, ACL 2007, pp. 177–180. Association for Computational Linguistics, Stroudsburg (2007). http://dl.acm.org/citation.cfm?id=1557769.1557821
Laki, L.J., Yang, Z.G.: Combining machine translation systems with quality estimation. In: Computational Linguistics and Intelligent Text Processing, Budapest, Hungary (2017)
Novák, A., Tihanyi, L., Prószéky, G.: The MetaMorpho translation system. In: Proceedings of the Third Workshop on Statistical Machine Translation, StatMT 2008, pp. 111–114. Association for Computational Linguistics, Stroudsburg (2008). http://dl.acm.org/citation.cfm?id=1626394.1626405
Oravecz, C., Váradi, T., Sass, B.: The Hungarian Gigaword Corpus. In: Chair, N.C.C., et al. (eds.) Proceedings of the 9th International Conference on Language Resources and Evaluation. ELRA, Reykjavik, May 2014
Orosz, G., Novák, A.: PurePos 2.0: a hybrid tool for morphological disambiguation. In: RANLP 2013, pp. 539–545 (2013)
Prószéky, G.: Industrial applications of unification morphology. In: Proceedings of the Fourth Conference on Applied Natural Language Processing, pp. 213–214. Association for Computational Linguistics, Stuttgart, October 1994. http://www.aclweb.org/anthology/A94-1046
Recski, G., Varga, D.: A Hungarian NP Chunker. The Odd Yearbook. ELTE SEAS Undergraduate Papers in Linguistics, Budapest (2009)
Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation edit rate with targeted human annotation. In: Proceedings of the Association for Machine Translation in the Americas, pp. 223–231 (2006)
Specia, L., Shah, K., de Souza, J.G., Cohn, T.: QuEst - A translation quality estimation framework. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 79–84. Association for Computational Linguistics, Sofia, August 2013. http://www.aclweb.org/anthology/P13-4014
Yang, Z.G., Laki, L.J.: Quality estimation for English-Hungarian machine translation. In: 7th Language and Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics, Poznan, Poland, pp. 170–174 (2015)
Yang, Z.G., Laki, L.J., Siklósi, B.: HuQ: an English-Hungarian corpus for quality estimation. In: Proceedings of the LREC 2016 Workshop - Translation Evaluation: From Fragmented Tools and Data Sets to an Integrated Ecosystem
Yang, Z.G., Laki, L.J.: \(\pi \)Rate: a task-oriented monolingual quality estimation system. Int. J. Comput. Linguist. Appl. 8 (2017)
Yang, Z.G., Laki, L.J., Siklósi, B.: Quality estimation for English-Hungarian with optimized semantic features. In: Computational Linguistics and Intelligent Text Processing, Konya, Turkey (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Yang, Z.G., Dömötör, A., Laki, L.J. (2018). A Quality Estimation System for Hungarian. In: Vetulani, Z., Mariani, J., Kubis, M. (eds) Human Language Technology. Challenges for Computer Science and Linguistics. LTC 2015. Lecture Notes in Computer Science(), vol 10930. Springer, Cham. https://doi.org/10.1007/978-3-319-93782-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-93782-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93781-6
Online ISBN: 978-3-319-93782-3
eBook Packages: Computer ScienceComputer Science (R0)