Skip to main content

A Quality Estimation System for Hungarian

  • Conference paper
  • First Online:
Human Language Technology. Challenges for Computer Science and Linguistics (LTC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10930))

Included in the following conference series:

  • 539 Accesses

Abstract

Quality estimation is an important field of machine translation evaluation. There are automatic evaluation methods for machine translation that use reference translations created by human translators. The creation of these reference translations is very expensive and time-consuming. Furthermore, these automatic evaluation methods are not real-time and the correlation between the results of these methods and that of human evaluation is very low in the case of translations from English to Hungarian. The other kind of evaluation approach is quality estimation. These methods address the task by estimating the quality of translations as a prediction task for which features are extracted from only the source and translated sentences. In this study, we describe an English-Hungarian quality estimation system that can predict quality of translated sentences. Furthermore, using the predicted the quality scores, we combined different kinds of machine translated outputs to improve the translation accuracy. For this task, we created a training corpus. Last, but not least, using the quality estimation method we created a monolingual quality estimation system for a psycholinguistically motivated parser. In this paper we summarize our results and show some partial results of ongoing projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.statmt.org/wmt17/quality-estimation-task.html.

  2. 2.

    http://www.statmt.org/wmt14/quality-estimation-task.html.

References

  1. Beck, D., Shah, K., Cohn, T., Specia, L.: SHEF-Lite: when less is more for translation quality estimation. In: Proceedings of the Workshop on Machine Translation (WMT), August 2013

    Google Scholar 

  2. Csendes, D., Csirik, J., Gyimóthy, T., Kocsor, A.: The szeged treebank. In: Matoušek, V., Mautner, P., Pavelka, T. (eds.) TSD 2005. LNCS (LNAI), vol. 3658, pp. 123–131. Springer, Heidelberg (2005). https://doi.org/10.1007/11551874_16

    Chapter  Google Scholar 

  3. Gonzalez-Agirre, A., Laparra, E., Rigau, G.: Multilingual central repository version 3.0. In: Calzolari, N., Choukri, K., Declerck, T., Dogan, M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. (eds.) LREC, pp. 2525–2529. European Language Resources Association (ELRA) (2012)

    Google Scholar 

  4. Halácsy, P., Kornai, A., Németh, L., Sas, B., Varga, D., Váradi, T., Vonyó, A.: A Hunglish korpusz és szótár. In: III. Magyar Számítógépes Nyelvészeti Konferencia. Szegedi Egyetem (2005)

    Google Scholar 

  5. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009). http://doi.acm.org/10.1145/1656274.1656278

    Article  Google Scholar 

  6. Indig, B., Vadász, N., Kalivoda, Á.: Decreasing entropy: how wide to open the window? In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M.A. (eds.) TPNC 2016. LNCS, vol. 10071, pp. 137–148. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49001-4_11

    Chapter  Google Scholar 

  7. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., Herbst, E.: Moses: Open source toolkit for statistical machine translation. In: Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, ACL 2007, pp. 177–180. Association for Computational Linguistics, Stroudsburg (2007). http://dl.acm.org/citation.cfm?id=1557769.1557821

  8. Laki, L.J., Yang, Z.G.: Combining machine translation systems with quality estimation. In: Computational Linguistics and Intelligent Text Processing, Budapest, Hungary (2017)

    Google Scholar 

  9. Novák, A., Tihanyi, L., Prószéky, G.: The MetaMorpho translation system. In: Proceedings of the Third Workshop on Statistical Machine Translation, StatMT 2008, pp. 111–114. Association for Computational Linguistics, Stroudsburg (2008). http://dl.acm.org/citation.cfm?id=1626394.1626405

  10. Oravecz, C., Váradi, T., Sass, B.: The Hungarian Gigaword Corpus. In: Chair, N.C.C., et al. (eds.) Proceedings of the 9th International Conference on Language Resources and Evaluation. ELRA, Reykjavik, May 2014

    Google Scholar 

  11. Orosz, G., Novák, A.: PurePos 2.0: a hybrid tool for morphological disambiguation. In: RANLP 2013, pp. 539–545 (2013)

    Google Scholar 

  12. Prószéky, G.: Industrial applications of unification morphology. In: Proceedings of the Fourth Conference on Applied Natural Language Processing, pp. 213–214. Association for Computational Linguistics, Stuttgart, October 1994. http://www.aclweb.org/anthology/A94-1046

  13. Recski, G., Varga, D.: A Hungarian NP Chunker. The Odd Yearbook. ELTE SEAS Undergraduate Papers in Linguistics, Budapest (2009)

    Google Scholar 

  14. Snover, M., Dorr, B., Schwartz, R., Micciulla, L., Makhoul, J.: A study of translation edit rate with targeted human annotation. In: Proceedings of the Association for Machine Translation in the Americas, pp. 223–231 (2006)

    Google Scholar 

  15. Specia, L., Shah, K., de Souza, J.G., Cohn, T.: QuEst - A translation quality estimation framework. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 79–84. Association for Computational Linguistics, Sofia, August 2013. http://www.aclweb.org/anthology/P13-4014

  16. Yang, Z.G., Laki, L.J.: Quality estimation for English-Hungarian machine translation. In: 7th Language and Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics, Poznan, Poland, pp. 170–174 (2015)

    Google Scholar 

  17. Yang, Z.G., Laki, L.J., Siklósi, B.: HuQ: an English-Hungarian corpus for quality estimation. In: Proceedings of the LREC 2016 Workshop - Translation Evaluation: From Fragmented Tools and Data Sets to an Integrated Ecosystem

    Google Scholar 

  18. Yang, Z.G., Laki, L.J.: \(\pi \)Rate: a task-oriented monolingual quality estimation system. Int. J. Comput. Linguist. Appl. 8 (2017)

    Google Scholar 

  19. Yang, Z.G., Laki, L.J., Siklósi, B.: Quality estimation for English-Hungarian with optimized semantic features. In: Computational Linguistics and Intelligent Text Processing, Konya, Turkey (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Győző Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z.G., Dömötör, A., Laki, L.J. (2018). A Quality Estimation System for Hungarian. In: Vetulani, Z., Mariani, J., Kubis, M. (eds) Human Language Technology. Challenges for Computer Science and Linguistics. LTC 2015. Lecture Notes in Computer Science(), vol 10930. Springer, Cham. https://doi.org/10.1007/978-3-319-93782-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93782-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93781-6

  • Online ISBN: 978-3-319-93782-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics