Skip to main content

A Connectionist Model of Reading with Error Correction Properties

  • Conference paper
  • First Online:
Human Language Technology. Challenges for Computer Science and Linguistics (LTC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10930))

Included in the following conference series:

  • 694 Accesses

Abstract

Recent models of associative long term memory (LTM) have emerged in the field of neuro-inspired computing. These models have interesting properties of error correction, robustness, storage capacity and retrieval performance. In this context, we propose a connectionist model of written word recognition with correction properties, using associative memories based on neural cliques. Similarly to what occurs in human language, the model takes advantage of the combination of phonological and orthographic information to increase the retrieval performance in error cases. Therefore, the proposed architecture and principles of this work could be applied to other neuro-inspired problems that involve multimodal processing, in particular for language applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.mrc-cbu.cam.ac.uk/people/matt.davis/Cmabrigde/.

  2. 2.

    This work was supported by the European Research Council under ERC Grant agreement number 290901 NEUCOD.

  3. 3.

    LIA_PHON v1.2, under GPL license, available in http://lia.univ-avignon.fr/chercheurs/bechet/download_fred.html.

  4. 4.

    Example: if \(b=3\) the same letter pattern is activated in 3 adjacent clusters. Using the example of Fig. 3 activated fanals are {(B,C5);(B,C1);(B,C2);(R,C1);(R,C2);(R,C3);(A,C2);(A,C3);(A,C4);(I,C3);(I,C4);(I,C5);(N,C4);(N,C5);(N,C6)}.

  5. 5.

    \(b_{0}=1\) and then \(b_{t+1}=2*b_{t}+1\) (for \(t=0,1,2,3,...\)) until the stopping condition is reached or \(b>c\).

  6. 6.

    Lexique.org is a French lexical database of lexical information of 135,000 words and 55,000 lemmas.

  7. 7.

    Accentuated and special characters are included.

  8. 8.

    \(matching=numberCorrectFanals/c\).

  9. 9.

    It provides zero if \(numberActivatedFanals=c\) and \(matching=1\) else it provides one.

  10. 10.

    The English benchmark has 107 words, among which there are 73 unique words.

  11. 11.

    https://gitlab.com/msobroza/context-typo-network.git.

  12. 12.

    The reinforcement of connections in a multilayer clique-based neural network is an unpublished problem.

References

  • Aboudib, A., Gripon, V., Jiang, X.: A study of retrieval algorithms of sparse messages in networks of neural cliques. In: COGNITIVE 2014: The 6th International Conference on Advanced Cognitive Technologies and Applications (2014)

    Google Scholar 

  • Azevedo, F.A.C., Carvalho, L.R.B., Grinberg, L.T., Farfel, J.M., Ferretti, R.E.L., Leite, R.E.P., Lent, R., Herculano-Houzel, S.: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 5, 532–541 (2009)

    Article  Google Scholar 

  • Berrou, C., Dufor, O., Gripon, V., Xiaoran, J.: Information, noise, coding, modulation: what about the brain? In: 8th International Symposium on Turbo Codes and Iterative Information Processing (ISTC) (2014)

    Google Scholar 

  • Boguslawski, B., Gripon, V., Seguin, F., Heitzmann, F.: Huffman coding for storing non-uniformly distributed messages in networks of neural cliques. In: 28th Conference on Artificial Intelligence, vol. 1. AAAI (2014)

    Google Scholar 

  • Christianson, K., Johnson, R., Rayner, K.: Letter transpositions within and across morphemes. J. Exp. Psychol. Learn. Mem. Cogn. 31(6), 1327 (2005)

    Article  Google Scholar 

  • Coltheart, M., Rastle, K., Perry, C., Langdon, R., Ziegler, J.: DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychol. Rev. 108(1), 204 (2001)

    Article  Google Scholar 

  • Grainger, J., Granier, J., Farioli, F., Van Assche, E., Van Heuven, W.: Letter position information and printed word perception: the relative-position priming constraint. J. Exp. Psychol. Hum. Percep. Perform. 32(4), 865 (2006)

    Article  Google Scholar 

  • Grainger, J., Whitney, C.: Does the huamn mnid raed wrods as a wlohe? Trends Cogn. Sci. 8(2), 58–59 (2004)

    Article  Google Scholar 

  • Gripon, V., Berrou, C.: Sparse neural networks with large learning diversity. IEEE Trans. Neural Netw. 22(7), 1087–1096 (2011)

    Article  Google Scholar 

  • Gripon, V., Jiang, X.: Mémoires associatives pour observations floues. In: Proceedings of XXIV-th Gretsi Seminar (2013)

    Google Scholar 

  • Jiang, X., Gripon, V., Berrou, C., Rabbat, M.: Storing sequences in binary tournament-based neural networks. IEEE Trans. Neural Netw. Learn. Syst. 27(5), 913–925 (2015a)

    Article  MathSciNet  Google Scholar 

  • Jiang, X., Sobroza Marques, M.R., Kirsch, P.-J., Berrou, C.: Improved retrieval for challenging scenarios in clique-based neural networks. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9094, pp. 400–414. Springer, Cham (2015b). https://doi.org/10.1007/978-3-319-19258-1_34

    Chapter  Google Scholar 

  • Leaver, A., Van Lare, J., Zielinski, B., Halpern, A., Rauschecker, J.: Brain activation during anticipation of sound sequences. J. Neurosci. 29(8), 2477–2485 (2009)

    Article  Google Scholar 

  • McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  • Mountcastle, V.: The columnar organization of the neocortex. Brain 120(4), 701–722 (1997)

    Article  Google Scholar 

  • Perea, M., Carreiras, M.: Do transposed-letter similarity effects occur at a prelexical phonological level? Q. J. Exp. Psychol. 59(9), 1600–1613 (2006)

    Article  Google Scholar 

  • Perea, M., Lupker, S., Kinoshita, S.: Transposed-letter confusability effects in masked form priming. Masked Priming: State of the Art, 97–120 (2003)

    Google Scholar 

  • Plaut, D.: Connectionist approaches to reading. The Science of Reading: A Handbook, pp. 24–38 (2005)

    Google Scholar 

  • Rayner, K., White, S., Johnson, R., Liversedge, S.: Raeding wrods with jubmled lettres there is a cost. Psychol. Sci. 17(3), 192–193 (2006)

    Article  Google Scholar 

  • Schacter, D.L., Buckner, R.L.: Priming and the brain. J. Neuron 20(2), 185–195 (1998)

    Article  Google Scholar 

  • Schoonbaert, S., Grainger, J.: Letter position coding in printed word perception: effects of repeated and transposed letters. Lang. Cogn. Process. 19(3), 333–367 (2004)

    Article  Google Scholar 

  • Starzyk, J., He, H., et al.: Spatio-temporal memories for machine learning: a long-term memory organization. IEEE Trans. Neural Netw. 20(5), 768–780 (2009)

    Article  Google Scholar 

  • Squire, L.R.: Memory systems of the brain: a brief history and current perspective. Neurobiol. Learn. Mem. 82(3), 171–177 (2004)

    Article  Google Scholar 

  • Tulving, E., Schacter, D.L.: Priming and human memory systems. JSTOR (1990)

    Article  Google Scholar 

  • Thivierge, J., Marcus, G.: The topographic brain: from neural connectivity to cognition. Trends Neurosci. 30(6), 251–259 (2007)

    Article  Google Scholar 

  • Van den Heuvel, M., Sporns, O.: Network hubs in the human brain. Trends Cogn. Sci. 17(12), 683–696 (2013)

    Article  Google Scholar 

  • Van Orden, G.: A rows is a rose: spelling, sound, and reading. Mem. Cogn. 15(3), 181–198 (1987)

    Article  Google Scholar 

  • Wang, W., Subagdja, B., Tan, A., Starzyk, J., et al.: Neural modeling of episodic memory: encoding, retrieval, and forgetting. IEEE Trans. Neural Netw. Learn. Syst. 23(10), 1574–1586 (2012)

    Article  Google Scholar 

  • Welvaert, M., Farioli, F., Grainger, J.: Graded effects of number of inserted letters in superset priming. Exp. Psychol. 55(1), 54–63 (2008)

    Article  Google Scholar 

  • Whitney, C.: How the brain encodes the order of letters in a printed word: the seriol model and selective literature review. Psychon. Bull. Rev. 8(2), 221–243 (2001)

    Article  Google Scholar 

  • Willshaw, D., Buneman, O., Longuet-Higgins, H.: Non-holographic associative memory. Nature (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Raphael Sobroza Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marques, M.R.S., Jiang, X., Dufor, O., Berrou, C., Kim-Dufor, DH. (2018). A Connectionist Model of Reading with Error Correction Properties. In: Vetulani, Z., Mariani, J., Kubis, M. (eds) Human Language Technology. Challenges for Computer Science and Linguistics. LTC 2015. Lecture Notes in Computer Science(), vol 10930. Springer, Cham. https://doi.org/10.1007/978-3-319-93782-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93782-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93781-6

  • Online ISBN: 978-3-319-93782-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics