Skip to main content

Development of Adaptive Force-Following Impedance Control for Interactive Robot

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10942))

Included in the following conference series:

Abstract

This paper presented a safety approach for the interactive manipulator. At first, the basic compliance control of the manipulator is realized by using the Cartesian impedance control, which inter-related the external force and the end position. In this way, the manipulator could work as an external force sensor. A novel force-limited trajectory was then generated in a high dynamics interactive manner, keeping the interaction force within acceptable tolerance. The proposed approach also proved that the manipulator was able to contact the environment compliantly, and reduce the instantaneous impact when collision occurs. Furthermore, adaptive dynamics joint controller was extended to all the joints for complementing the biggish friction. Experiments were performed on a 5-DOF flexible joint manipulator. The experiment results of taping the obstacle, illustrate that the interactive robot could keep the desired path precisely in free space, and follow the demand force in good condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mühlig, M., Gienger, M., Steil, J.J.: Interactive imitation learning of object movement skills. Auton. Robot. 32(2), 97–114 (2012)

    Article  Google Scholar 

  2. Haddadin, S., Albu-Schäffer, A., Hirzinger, G.: Safe physical human-robot interaction: measurements analysis and new insights. In: Kaneko, M., Nakamura, Y. (eds.) Robotics Research. Springer Tracts in Advanced Robotics, vol. 66. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14743-2_33

    Chapter  Google Scholar 

  3. Huang, J.B., et al.: DSP/FPGA-based controller architecture for flexible joint robot with enhanced impedance performance. J. Intell. Robot. Syst. 53(3), 247 (2008)

    Article  Google Scholar 

  4. Doggett, W.R., et al.: Development of a Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) (2014)

    Google Scholar 

  5. Albu-Schäffer, A., Bicchi, A.: Actuators for Soft Robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_21

    Chapter  Google Scholar 

  6. Olson, M.W.: Passive trunk loading influences muscle activation during dynamic activity. Muscle Nerve 44(5), 749 (2011)

    Article  Google Scholar 

  7. Hongwei, Z., Ahmad, S., Liu, G.: Torque estimation for robotic joint with harmonic drive transmission based on position measurements. IEEE Trans. Robot. 31(2), 322–330 (2017)

    Google Scholar 

  8. Kulić, D., Croft, E.: Pre-collision safety strategies for human-robot interaction. Auton. Robot. 22(2), 149–164 (2007)

    Article  Google Scholar 

  9. Hogan, N.: Impedance control: an approach to manipulation: theory (part 1); implementation (part 2); applications (part 3). ASME J. Dyn. Syst. Measur. Contr. 107, 1–24 (1985)

    Article  Google Scholar 

  10. Kazerooni, H., Sheridan, T.B., Houpt, P.K.: Robust compliant motion for manipulators: the fundamental concepts of compliant motion (part I); design method (part II). IEEE J. Robot. Autom. 2(2), 83–105 (1986)

    Article  Google Scholar 

  11. Brock, O., Khatib, O.: Elastic strips: a framework for motion generation in human environments. Int. J. Robot. Res. 21(12), 1031–1052 (2002)

    Article  Google Scholar 

  12. Wu, X.D., et al.: Parameter identification for a LuGre model based on steady-state tire conditions. Int. J. Automot. Technol. 12(5), 671 (2011)

    Article  Google Scholar 

  13. Hamon, P., et al.: Dynamic identification of robot with a load-dependent joint friction model, pp. 129–135 (2015)

    Google Scholar 

  14. Huang, J.B., et al.: Adaptive cartesian impedance control system for flexible joint robot by using DSP/FPGA architecture. Int. J. Robot. Autom. 23(4), 251–258 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Jianbin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jianbin, H., Zhi, L., Hong, L. (2018). Development of Adaptive Force-Following Impedance Control for Interactive Robot. In: Tan, Y., Shi, Y., Tang, Q. (eds) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science(), vol 10942. Springer, Cham. https://doi.org/10.1007/978-3-319-93818-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93818-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93817-2

  • Online ISBN: 978-3-319-93818-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics