Skip to main content

Deep Regression Models for Local Interaction in Multi-agent Robot Tasks

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10942))

Included in the following conference series:

  • 2428 Accesses

Abstract

A direct data-driven path planner for small autonomous robots is a desirable feature of robot swarms that would allow each agent of the system to directly produce control actions from sensor readings. This feature allows to bring the artificial system closer to its biological model, and facilitates the programming of tasks at the swarm system level. To develop this feature it is necessary to generate behavior models for different possible events during navigation. In this paper we propose to develop these models using deep regression. In accordance with the dependence of distance on obstacles in the environment along the sensor array, we propose the use of a recurrent neural network. The models are developed for different types of obstacles, free spaces and other robots. The scheme was successfully tested by simulation and on real robots for simple grouping tasks in unknown environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benitez, J., Parra, L., Montiel, H.: Diseño de plataformas robóticas diferenciales conectadas en topología mesh para tecnología Zigbee en entornos cooperativos. Tekhnê 13(2), 13–18 (2016)

    Google Scholar 

  2. Jacinto, E., Giral, M., Martínez, F.: Modelo de navegación colectiva multi-agente basado en el quorum sensing bacterial. Tecnura 20(47), 29–38 (2016)

    Article  Google Scholar 

  3. Mane, S., Vhanale, S.: Real time obstacle detection for mobile robot navigation using stereo vision. In: International Conference on Computing, Analytics and Security Trends (CAST), pp. 1–6 (2016)

    Google Scholar 

  4. Martínez, F., Acero, D.: Robótica Autónoma: Acercamientos a algunos problemas centrales. CIDC, Distrital University Francisco José de Caldas (2015). ISBN 9789588897561

    Google Scholar 

  5. Nasrinahar, A., Huang, J.: Effective route planning of a mobile robot for static and dynamic obstacles with fuzzy logic. In: 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2016), pp. 1–6 (2016)

    Google Scholar 

  6. Nattharith, P., Serdar, M.: An indoor mobile robot development: a low-cost platform for robotics research. In: International Electrical Engineering Congress (iEECON 2014), pp. 1–4 (2014)

    Google Scholar 

  7. Oral, T., Polat, F.: MOD* lite: an incremental path planning algorithm taking care of multiple objectives. IEEE Trans. Cybern. 46(1), 245–257 (2016)

    Article  Google Scholar 

  8. Ortiz, O., Pastor, J., Alcover, P., Herrero, R.: Innovative mobile robot method: improving the learning of programming languages in engineering degrees. IEEE Trans. Educ. 60(2), 143–148 (2016)

    Article  Google Scholar 

  9. Rendón, A.: Evaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles. Tekhnê 12(2), 75–82 (2015)

    Google Scholar 

  10. Schmitt, S., Will, H., Aschenbrenner, B., Hillebrandt, T., Kyas, M.: A reference system for indoor localization testbeds. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN 2012), pp. 1–8 (2012)

    Google Scholar 

  11. Seon-Je, Y., Tae-Kyung, K., Tae-Yong, K., Jong-Koo, P.: Geomagnetic localization of mobile robot. In: International Conference on Mechatronics (ICM 2017), pp. 1–6 (2017)

    Google Scholar 

  12. Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P., Gupta, V., Goodwine, B., Baras, J., Wang, S.: Toward a science of cyber-physical system integration. Proc. IEEE 100(1), 29–44 (2012)

    Article  Google Scholar 

  13. Teatro, T., Eklund, M., Milman, R.: Nonlinear model predictive control for omnidirectional robot motion planning and tracking with avoidance of moving obstacles. Can. J. Electr. Comput. Eng. 37(3), 151–156 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the District University Francisco José de Caldas and the Scientific Research and Development Centre (CIDC). The views expressed in this paper are not necessarily endorsed by District University. The authors thank the research group ARMOS for the evaluation carried out on prototypes of ideas and strategies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredy Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martínez, F., Penagos, C., Pacheco, L. (2018). Deep Regression Models for Local Interaction in Multi-agent Robot Tasks. In: Tan, Y., Shi, Y., Tang, Q. (eds) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science(), vol 10942. Springer, Cham. https://doi.org/10.1007/978-3-319-93818-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93818-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93817-2

  • Online ISBN: 978-3-319-93818-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics