Skip to main content

Optimality and Modularity in Human Movement: From Optimal Control to Muscle Synergies

  • Chapter
  • First Online:
Biomechanics of Anthropomorphic Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 124))

Abstract

In this chapter, we review recent work related to the optimal and modular control hypotheses for human movement. Optimal control theory is often thought to imply that the brain continuously computes global optima for each motor task it faces. Modular control theory typically assumes that the brain explicitly stores genuine synergies in specific neural circuits whose combined recruitment yields task-effective motor inputs to muscles. Put this way, these two influential motor control theories are pushed to extreme positions. A more nuanced view, framed within Marr’s tri-level taxonomy of a computational theory of movement neuroscience, is discussed here. We argue that optimal control is best viewed as helping to understand “why” certain movements are preferred over others but does not say much about how the brain would practically trigger optimal strategies. We also argue that dimensionality reduction found in muscle activities may be a by-product of optimality and cannot be attributed to neurally hardwired synergies stricto sensu, in particular when the synergies are extracted from simple factorization algorithms applied to electromyographic data; their putative nature is indeed strongly dictated by the methodology itself. Hence, more modeling work is required to critically test the modularity hypothesis and assess its potential neural origins. We propose that an adequate mathematical formulation of hierarchical motor control could help to bridge the gap between optimality and modularity, thereby accounting for the most appealing aspects of the human motor controller that robotic controllers would like to mimic: rapidity, efficiency, and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A useful analogy from classical mechanics is the principle of least action. For instance, trajectories of conservative systems are extrema of the Action, i.e. the time integral of the Lagrangian (kinetic minus potential energies), while it is hardly arguable that objects explicitly “optimize” their trajectories on purpose. In fact, finding whether a Lagrangian exists for a given system of differential equations has been the topic of numerous investigations in physics which date back to the works of Maupertuis, Euler or Lagrange. This refers to the inverse problem of calculus of variations [47] and can be seen as the analog problem of inverse optimal control. Notably, inverse calculus of variations has been used in the context of motor control to investigate the origin of the two-thirds power law [93].

  2. 2.

    In this chapter, the terms synergy, primitive, module or building block are loosely treated as synonyms and will be used interchangeably. In the literature, a precise mathematical definition specifying the exact nature of each term is generally lacking. Different authors may thus have their own conception regarding the meaning of each term.

  3. 3.

    In this chapter, we consider only integral costs for simplicity but we could easily add a terminal cost in all the optimal control problems.

  4. 4.

    It is generally assumed that the muscle torque \(\tau \) acting at a given joint can be split into two terms such that \(\tau =\tau _{stat}+\tau _{dyn}\), where \(\tau _{stat}\) is a static term which only depends on the system position and \(\tau _{dyn}\) is a dynamic term which depends on its velocity and acceleration [7, 72]. Gravitational torque is part of the static term which may also include other terms like elastic forces. On this basis, researchers have proposed to split EMG activity into tonic and phasic components (e.g. [52]). To clarify our purpose, let us consider a single-joint upward movement here. If the static torques were to be compensated at all times, a phasic activity of the agonist muscle should come on top of its tonic activity during the entire motion duration. On the contrary, if the agonist EMG signal is found to be below its corresponding tonic level, it may suggest that gravity is not just counteracted but utilized as a driving force. This lack of tonic activity, already observed - but not fully considered - in several studies, actually echoes the inactivation principle mentioned in the main text. If observing proper inactivation may be tricky due to multiple factors such as the noisiness of EMGs, the predicted briefness of the phenomenon and the requirement of being under well-suited conditions of speed and amplitude, this lack of compensation of gravity torques, clearly apparent in EMG data, is additional evidence for an energy-related use of gravity in fast reaching movements.

  5. 5.

    This terminology is borrowed from [88]. In [127], the terms internal and regularization are used for subjective costs while the term task-based is used for objective costs.

  6. 6.

    Remarkably, motor control has been conceived as a true (motoric) decision-making problem recently [164].

  7. 7.

    When we say that movement time is known, modeling-wise, we mean that time is set by the user (often it is taken from experimental data). Therefore, time is an input to the model. Note, however, that time can also be a free variable that emerges from optimization just as the limb’s trajectory does [138].

  8. 8.

    Vigor loosely refers to the speed, extent or frequency of movement [48]. It is often characterized by relationships between amplitude and velocity or duration.

  9. 9.

    For example, a researcher might decide to work in the space of cost functions that depend on position and speed variables, or might wish to include acceleration variables (e.g. [27]). Other assumptions could be made such as working with polynomials (e.g. [115, 139]). However, a numerical implementation would necessitate restricting to some degree n or working with a finite number of basis costs belonging to the function space under consideration.

  10. 10.

    Formally, this is the set of all the optimal trajectories joining any initial state to any terminal one.

  11. 11.

    A useful biomechanical analogy would be to talk about the “moment of a force” without precising the fixed reference point with respect to which it is calculated.

  12. 12.

    In particular, this would be compatible with the claim that muscle patterns are habitual rather than optimal [123].

  13. 13.

    The basis modules \(v_{i}(x,t)\) might be separated into spatial and temporal components \(\sigma _{i}(t)w_{i}(x)\) such as in [103] or [95], and in a way which is reminiscent of the model proposed in [43]. In this case, spatial (state-dependent) modules, or muscle synergies, would be feedback-dependent as suggested in [118]. Analogously, this time-space separation is also apparent in the optimal control of finite-horizon LQR/LQG problems.

  14. 14.

    Optimization and optimal control should not be confused although they may be related when one comes to numerical resolution of optimal control problems. The former only deals with a standard function while the latter deals with a functional, i.e. a function of a function.

References

  1. Ajami, A., Gauthier, J.P., Maillot, T., Serres, U.: How humans fly. ESAIM: Control, Optimisation and Calculus of Variations 19(4), 1030–1054 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ajemian, R., Hogan, N.: Experimenting with theoretical motor neuroscience, (2010)

    Google Scholar 

  3. Alessandro, C., Nori, F.: Identification of synergies by optimization of trajectory tracking tasks. In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), IEEE, pp. 924–930 (2012)

    Google Scholar 

  4. Alessandro, C, Carbajal, J.P., d’Avella, A.: A computational analysis of motor synergies by dynamic response decomposition. Front. Comput. Neurosci. 7 (2013a)

    Google Scholar 

  5. Alessandro, C., Delis, I., Nori, F., Panzeri, S., Berret, B.: Muscle synergies in neuroscience and robotics: from input-space to task-space perspectives. Front. Comput. Neurosci. 7, 43 (2013b)

    Article  Google Scholar 

  6. Allen, J.L., Neptune, R.R.: Three-dimensional modular control of human walking. J. Biomech. 45(12), 2157–2163 (2012)

    Article  Google Scholar 

  7. Atkeson, C.G., Hollerbach, J.M.: Kinematic features of unrestrained vertical arm movements. J. Neurosci. 5(9), 2318–2330 (1985)

    Article  Google Scholar 

  8. Bellman, R.E.: Dynamic Programming. Princeton, NJ (1957)

    Google Scholar 

  9. Berger, D.J., Gentner, R., Edmunds, T., Pai, D.K., d’Avella, A.: Differences in adaptation rates after virtual surgeries provide direct evidence for modularity. J. Neurosci. 33(30), 12384–12394 (2013)

    Article  Google Scholar 

  10. Berniker, M., Kording, K.P.: Deep networks for motor control functions. Front. Comput. Neurosci. 9 (2015)

    Google Scholar 

  11. Berret, B., Jean, F.: Why don’t we move slower? the value of time in the neural control of action. J. Neurosci. 36(4), 1056–1070 (2016)

    Article  Google Scholar 

  12. Berret, B., Darlot, C., Jean, F., Pozzo, T., Papaxanthis, C., Gauthier, J.P.: The inactivation principle: mathematical solutions minimizing the absolute work and biological implications for the planning of arm movements. PLoS Comput. Biol. 4(10), e100,0194 (2008a)

    Article  MathSciNet  Google Scholar 

  13. Berret, B., Gauthier, J.P., Papaxanthis, C.: How humans control arm movements. Proc. Steklov Inst. Mathematics 261, 44–58 (2008b)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berret, B., Bonnetblanc, F., Papaxanthis, C., Pozzo, T.: Modular control of pointing beyond arm’s length. J. Neurosci. 29(1), 191–205 (2009)

    Article  Google Scholar 

  15. Berret, B., Chiovetto, E., Nori, F., Pozzo, T.: Evidence for composite cost functions in arm movement planning: an inverse optimal control approach. PLoS Comput. Biol. 7(10), e1002,183 (2011a)

    Article  MathSciNet  Google Scholar 

  16. Berret, B., Chiovetto, E., Nori, F., Pozzo, T.: Manifold reaching paradigm: how do we handle target redundancy? J. Neurophysiol. 106(4), 2086–2102 (2011b)

    Article  Google Scholar 

  17. Berret, B., Bisio, A., Jacono, M., Pozzo, T.: Reach endpoint formation during the visuomotor planning of free arm pointing. Eur. J. Neurosci. 40(10), 3491–3503 (2014)

    Article  Google Scholar 

  18. Brochier, T., Spinks, R.L., Umilta, M.A., Lemon, R.N.: Patterns of muscle activity underlying object-specific grasp by the macaque monkey. J. Neurophysiol. 92(3), 1770–1782 (2004)

    Article  Google Scholar 

  19. Buneo, C.A., Soechting, J.F., Flanders, M.: Muscle activation patterns for reaching: the representation of distance and time. J. Neurophysiol. 71(4), 1546–1558 (1994)

    Article  Google Scholar 

  20. Caggiano, V., Cheung, V.C., Bizzi, E.: An optogenetic demonstration of motor modularity in the mammalian spinal cord. Sci. Rep. 6(35), 185 (2016)

    Google Scholar 

  21. Cappellini, G., Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Motor patterns in human walking and running. J. Neurophysiol. 95(6), 3426–37 (2006)

    Article  Google Scholar 

  22. Cheung, V.C., d’Avella, A., Tresch, M.C., Bizzi, E.: Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J. Neurosci. 25(27), 6419–34 (2005)

    Article  Google Scholar 

  23. Cheung, V.C., Piron, L., Agostini, M., Silvoni, S., Turolla, A., Bizzi, E.: Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc. Natl. Acad. Sci. U S A 106(46), 19563–19568 (2009)

    Article  Google Scholar 

  24. Cheung, V.C.K., Turolla, A., Agostini, M., Silvoni, S., Bennis, C., Kasi, P., Paganoni, S., Bonato, P., Bizzi, E.: Muscle synergy patterns as physiological markers of motor cortical damage. Proc. Natl. Acad. Sci. U S A 109(36), 14652–14656 (2012)

    Article  Google Scholar 

  25. Chhabra, M., Jacobs, R.A.: Properties of synergies arising from a theory of optimal motor behavior. Neural. Comput. 18(10), 2320–2342 (2006)

    Article  MathSciNet  Google Scholar 

  26. Chiovetto, E., Berret, B., Delis, I., Panzeri, S., Pozzo, T.: Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies. Front. Comput. Neurosci. 7, 11 (2013)

    Article  Google Scholar 

  27. Chittaro, F., Jean, F., Mason, P.: On the inverse optimal control problems of the human locomotion: stability and robustness of the minimizers. J. Math. Sci. 195(3), 269–287 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., Shenoy, K.V.: Neural population dynamics during reaching. Nature 487(7405), 51–56 (2012)

    Article  Google Scholar 

  29. Chvatal, S.A., Torres-Oviedo, G., Safavynia, S.A., Ting, L.H.: Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors. J. Neurophysiol 106(2), 999–1015 (2011)

    Article  Google Scholar 

  30. Clark, D.J., Ting, L.H., Zajac, F.E., Neptune, R.R., Kautz, S.A.: Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J. Neurophysiol 103(2), 844–857 (2010)

    Article  Google Scholar 

  31. Cluff, T., Scott, S.H.: Apparent and actual trajectory control depend on the behavioral context in upper limb motor tasks. J. Neurosci. 35(36), 12465–12476 (2015)

    Article  Google Scholar 

  32. Crevecoeur, F., Thonnard, J.L., Lef èvre, P.: Optimal integration of gravity in trajectory planning of vertical pointing movements. J. Neurophysiol 102(2), 786–796 (2009)

    Article  Google Scholar 

  33. Danziger, Z., Mussa-Ivaldi, F.A.: The influence of visual motion on motor learning. J. Neurosci. 32(29), 9859–9869 (2012)

    Article  Google Scholar 

  34. d’Avella, A., Bizzi, E.: Shared and specific muscle synergies in natural motor behaviors. Proc. Natl. Acad. Sci. U S A 102(8), 3076–3081 (2005)

    Article  Google Scholar 

  35. d’Avella, A., Pai, D.K.: Modularity for sensorimotor control: evidence and a new prediction. J. Motor Behaviob 42(6), 361–369 (2010)

    Article  Google Scholar 

  36. d’Avella, A., Tresch, M.C.: Modularity in the motor system: decomposition of muscle patterns as combinations of time-varying synergies. In: Becker, S., Ghahramani, Z. (eds.) Dietterich TG, pp. 141–148. NIPS, MIT Press (2001)

    Google Scholar 

  37. d’Avella, A., Saltiel, P., Bizzi, E.: Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6(3), 300–308 (2003)

    Article  Google Scholar 

  38. d’Avella, A., Portone, A., Fernandez, L., Lacquaniti, F.: Control of fast-reaching movements by muscle synergy combinations. J. Neurosci. 26(30), 7791–7810 (2006)

    Article  Google Scholar 

  39. d’Avella, A., Fernandez, L., Portone, A., Lacquaniti, F.: Modulation of phasic and tonic muscle synergies with reaching direction and speed. J. Neurophysiol 100(3), 1433–1454 (2008)

    Article  Google Scholar 

  40. de Rugy, A., Loeb, G.E., Carroll, T.J.: Are muscle synergies useful for neural control? Front. Comput. Neurosci. 7, 19 (2013)

    Google Scholar 

  41. Delis, I., Berret, B., Pozzo, T., Panzeri, S.: A methodology for assessing the effect of correlations among muscle synergy activations on task-discriminating information. Front. Comput. Neurosci. 7, 54 (2013a)

    Google Scholar 

  42. Delis, I., Berret, B., Pozzo, T., Panzeri, S.: Quantitative evaluation of muscle synergy models: a single-trial task decoding approach. Front Comput. Neurosci. 7, 8 (2013b)

    Google Scholar 

  43. Delis, I., Panzeri, S., Pozzo, T., Berret, B.: A unifying model of concurrent spatial and temporal modularity in muscle activity. J. Neurophysiol 111(3), 675–693 (2014)

    Article  Google Scholar 

  44. Delis, I., Panzeri, S., Pozzo, T., Berret, B.: Task-discriminative space-by-time factorization of muscle activity. Front Hum. Neurosci. 9, 399 (2015)

    Article  Google Scholar 

  45. Diedrichsen, J., Shadmehr, R., Ivry, R.B.: The coordination of movement: optimal feedback control and beyond. Trends Cogn. Sci. (2009)

    Google Scholar 

  46. Dominici, N., Ivanenko, Y.P., Cappellini, G., d’Avella, A., Mondí, V., Cicchese, M., Fabiano, A., Silei, T., Di Paolo, A., Giannini, C., Poppele, R.E., Lacquaniti, F.: Locomotor primitives in newborn babies and their development. Science 334(6058), 997–999 (2011)

    Article  Google Scholar 

  47. Douglas, J.: Solution of the inverse problem of the calculus of variations. Trans. Am. Mathe. Soc. 50(1), 71–128 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  48. Dudman, J.T., Krakauer, J.W.: The basal ganglia: from motor commands to the control of vigor. Curr. Opin. Neurobiol. 37, 158–166 (2016)

    Article  Google Scholar 

  49. Engelbrecht, S.: Minimum principles in motor control. J. Math. Psychol. 45(3), 497–542 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  50. Farshchiansadegh, A., Melendez-Calderon, A., Ranganathan, R., Murphey, T.D., Mussa-Ivaldi, F.A.: Sensory agreement guides kinetic energy optimization of arm movements during object manipulation. PLoS Comput. Biol. 12(4), e1004,861 (2016)

    Article  Google Scholar 

  51. Ferrante, A., Marro, G., Ntogramatzidis, L.: A parametrization of the solutions of the finite-horizon lq problem with general cost and boundary conditions. Automatica 41, 1359–1366 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Flanders, M., Pellegrini, J.J., Geisler, S.D.: Basic features of phasic activation for reaching in vertical planes. Exp. Brain Res. 110(1), 67–79 (1996)

    Article  Google Scholar 

  53. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)

    Article  Google Scholar 

  54. Friston, K.: What is optimal about motor control? Neuron 72, 488–498 (2011)

    Article  Google Scholar 

  55. Ganesh, G., Haruno, M., Kawato, M., Burdet, E.: Motor memory and local minimization of error and effort, not global optimization, determine motor behavior. J. Neurophysiol 104(1), 382–390 (2010)

    Article  Google Scholar 

  56. Gao, P., Ganguli, S.: On simplicity and complexity in the brave new world of large-scale neuroscience. Curr. Opin. Neurobiol 32, 148–155 (2015)

    Article  Google Scholar 

  57. Gauthier, J.P., Berret, B., Jean, F.: A biomechanical inactivation principle. Proc. Steklov Inst. Mathematics 268, 93–116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Gaveau, J., Papaxanthis, C.: The temporal structure of vertical arm movements. PLoS One 6(7), e22,045 (2011)

    Article  Google Scholar 

  59. Gaveau, J., Paizis, C, Berret, B., Pozzo, T., Papaxanthis, C.: Sensorimotor adaptation of point-to-point arm movements after space-flight: the role of the internal representation of gravity force in trajectory planning. J. Neurophysiol (2011)

    Google Scholar 

  60. Gaveau, J., Berret, B., Demougeot, L., Fadiga, L., Pozzo, T., Papaxanthis, C.: Energy-related optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist rotations. J. Neurophysiol 111(1), 4–16 (2014)

    Article  Google Scholar 

  61. Gaveau, J., Berret, B., Angelaki, D.E., Papaxanthis, C.: Direction-dependent arm kinematics reveal optimal integration of gravity cues. eLife 5, 16,394 (2016)

    Article  Google Scholar 

  62. Geisert M, Del Prete A, Mansard N, Romano F, Nori F (2017) Regularized hierarchical differential dynamic programming. IEEE Trans Rob

    Google Scholar 

  63. Gentili, R., Cahouet, V., Papaxanthis, C.: Motor planning of arm movements is direction-dependent in the gravity field. Neuroscience 145(1), 20–32 (2007)

    Article  Google Scholar 

  64. Giszter, S.F., Hart, C.B.: Motor primitives and synergies in the spinal cord and after injury- the current state of play. Ann. N.Y. Acad. Sci. 1279(1), 114–126 (2013)

    Article  Google Scholar 

  65. Gizzi, L., Nielsen, J.F., Felici, F., Ivanenko, Y.P., Farina, D.: Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J. Neurophysiol 106(1), 202–10 (2011)

    Article  Google Scholar 

  66. Harris, C.M., Wolpert, D.M.: Signal-dependent noise determines motor planning. Nature 394(6695), 780–784 (1998)

    Article  Google Scholar 

  67. Hart, C.B., Giszter, S.F.: Modular premotor drives and unit bursts as primitives for frog motor behaviors. J. Neurosci. 24(22), 5269–5282 (2004)

    Article  Google Scholar 

  68. Hart, C.B., Giszter, S.F.: A neural basis for motor primitives in the spinal cord. J. Neurosci. 30(4), 1322–1336 (2010)

    Article  Google Scholar 

  69. Hilt, P.M., Berret, B., Papaxanthis, C., Stapley, P.J., Pozzo, T.: Evidence for subjective values guiding posture and movement coordination in a free-endpoint whole-body reaching task. Sci. Rep. 6(23), 868 (2016)

    Google Scholar 

  70. Hirashima, M., Oya, T.: How does the brain solve muscle redundancy? filling the gap between optimization and muscle synergy hypotheses. Neurosci. Res. 104, 80–87 (2016)

    Article  Google Scholar 

  71. Holdefer, R.N., Miller, L.E.: Primary motor cortical neurons encode functional muscle synergies. Exp. Brain Res. 146(2), 233–43 (2002)

    Article  Google Scholar 

  72. Hollerbach, J.M., Flash, T.: Dynamic interactions between limb segments during planar arm movement. Biol. Cybern. 44(1), 67–77 (1982)

    Article  Google Scholar 

  73. Hondzinski, J.M., Soebbing, C.M., French, A.E., Winges, S.A.: Different damping responses explain vertical endpoint error differences between visual conditions. Exp. Brain Res. 234(6), 1575–1587 (2016)

    Article  Google Scholar 

  74. Hug, F., Turpin, N.A., Guével, A., Dorel, S.: Is interindividual variability of emg patterns in trained cyclists related to different muscle synergies? J. Appl. Physiol. 108(6), 1727–1736 (2010)

    Article  Google Scholar 

  75. Hug, F., Turpin, N.A., Couturier, A., Dorel, S.: Consistency of muscle synergies during pedaling across different mechanical constraints. J. Neurophysiol 106(1), 91–103 (2011)

    Article  Google Scholar 

  76. Huh, D., Sejnowski, T.J.: Conservation law for self-paced movements. Proc. Natl. Acad. Sci. U S A 113(31), 8831–8836 (2016)

    Article  Google Scholar 

  77. Inouye, J.M., Valero-Cuevas, F.J.: Muscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumption. PLoS Comput. Biol. 12(2), e1004,737 (2016)

    Article  Google Scholar 

  78. Ivanenko, Y.P., Grasso, R., Zago, M., Molinari, M., Scivoletto, G., Castellano, V., Macellari, V., Lacquaniti, F.: Temporal components of the motor patterns expressed by the human spinal cord reflect foot kinematics. J. Neurophysiol 90(5), 3555–65 (2003)

    Article  Google Scholar 

  79. Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Five basic muscle activation patterns account for muscle activity during human locomotion. J. Physiol. 556(Pt 1), 267–282 (2004)

    Article  Google Scholar 

  80. Ivanenko, Y.P., Cappellini, G., Dominici, N., Poppele, R.E., Lacquaniti, F.: Coordination of locomotion with voluntary movements in humans. J. Neurosci. 25(31), 7238–7253 (2005)

    Article  Google Scholar 

  81. Izawa, J., Rane, T., Donchin, O., Shadmehr, R.: Motor adaptation as a process of reoptimization. J. Neurosci. 28(11), 2883–2891 (2008)

    Article  Google Scholar 

  82. Jean, F., Berret, B.: On the Duration of Human Movement: From Self-paced to Slow/Fast Reaches up to Fitts’s Law, pp. 43–65. Springer International Publishing, Cham (2017)

    Google Scholar 

  83. Kalman, R.: When is a linear control system optimal? ASME Transactions. J. Basic Eng. 86, 51–60 (1964)

    Article  Google Scholar 

  84. Kappen, H.J.: Optimal control theory and the linear bellman equation. In: Barber, D., Cemgil, A.T., Chiappa, S. (eds.), Bayesian Time Series Models, Cambridge University Press, pp. 363–387, Cambridge Books Online (2011)

    Google Scholar 

  85. Kargo, W.J., Giszter, S.F.: Individual premotor drive pulses, not time-varying synergies, are the units of adjustment for limb trajectories constructed in spinal cord. J. Neurosci. 28(10), 2409–25 (2008)

    Article  Google Scholar 

  86. Kargo, W.J., Nitz, D.A.: Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. J. Neurosci. 23(35), 11255–11269 (2003)

    Article  Google Scholar 

  87. Kelso, J.S.: Dynamic patterns: the self-organization of brain and behavior. MIT press, Cambridge (1997)

    Google Scholar 

  88. Knill, D.C., Bondada, A., Chhabra, M.: Flexible, task-dependent use of sensory feedback to control hand movements. J. Neurosci. 31(4), 1219–1237 (2011)

    Article  Google Scholar 

  89. Krakauer, J.W., Ghazanfar, A.A., Gomez-Marin, A., MacIver, M.A., Poeppel, D.: Neuroscience needs behavior: correcting a reductionist bias. Neuron 93(3), 480–490 (2017)

    Article  Google Scholar 

  90. Kutch, J.J., Valero-Cuevas, F.J.: Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8(5), e1002,434 (2012)

    Article  Google Scholar 

  91. Lacquaniti, F., Ivanenko, Y.P., Zago, M.: Patterned control of human locomotion. J. Physiol. 590(Pt 10), 2189–2199 (2012)

    Article  Google Scholar 

  92. Le Seac’h, A.B., McIntyre, J.: Multimodal reference frame for the planning of vertical arms movements. Neurosci. Lett. 423(3), 211–215 (2007)

    Article  Google Scholar 

  93. Lebedev, S., Tsui, W.H., Van Gelder, P.: Drawing movements as an outcome of the principle of least action. J. Math. Psychol. 45(1), 43–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  94. Li, W., Todorov, E.: Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system. Int. J. Control. 80(9), 1439–1453 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  95. Loeb, E., Giszter, S., Bizzi, P.S.E., Mussa-Ivaldi, F.: Output units of motor behavior: an experimental and modeling study. J. Cognit. Neurosci. 12(1), 78–97 (2000)

    Article  Google Scholar 

  96. Loeb, G.E.: Optimal isn’t good enough. Biol. Cybern. 106(11–12), 757–765 (2012)

    Article  Google Scholar 

  97. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Henry Holt & Company, New York (1983)

    Google Scholar 

  98. McKay, J.L., Ting, L.H.: Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts. PLoS Comput Biol 8(4), e1002,465 (2012)

    Article  Google Scholar 

  99. Mehrabi, N., Razavian, R.S., Ghannadi, B., McPhee, J.: Predictive simulation of reaching moving targets using nonlinear model predictive control. Front. Comput. Neurosci. 10 (2016)

    Google Scholar 

  100. Mistry, M., Theodorou, E., Schaal, S., Kawato, M.: Optimal control of reaching includes kinematic constraints. J. Neurophysiol. 110(1), 1–11 (2013)

    Article  Google Scholar 

  101. Mohan, V., Morasso, P.: Passive motion paradigm: an alternative to optimal control. Front Neurorob. 5, 4 (2011)

    Article  Google Scholar 

  102. Muceli, S., Boye, A.T., d’Avella, A., Farina, D.: Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane. J. Neurophysiol 103(3), 1532–42 (2010)

    Article  Google Scholar 

  103. Mussa-Ivaldi, F.A.: Nonlinear force fields: a distributed system of control primitives for representing and learning movements. In: Proceedings., 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 1997. CIRA’97., IEEE, pp. 84–90 (1997)

    Google Scholar 

  104. Mussa-Ivaldi, F.A., Giszter, S.F., Bizzi, E.: Linear combinations of primitives in vertebrate motor control. Proc. Natl. Acad. Sci. U S A 91(16), 7534–7538 (1994)

    Article  Google Scholar 

  105. Nashed, J.Y., Crevecoeur, F., Scott, S.H.: Influence of the behavioral goal and environmental obstacles on rapid feedback responses. J. Neurophysiol 108(4), 999–1009 (2012)

    Article  Google Scholar 

  106. Nelson, W.L.: Physical principles for economies of skilled movements. Biol. Cybern. 46(2), 135–147 (1983)

    Article  MATH  Google Scholar 

  107. Neptune, R.R., Clark, D.J., Kautz, S.A.: Modular control of human walking: a simulation study. J. Biomech. 42(9), 1282–7 (2009)

    Article  Google Scholar 

  108. Nori, F., Frezza, R.: Linear optimal control problems and quadratic cost functions estimation. In: 12th Mediterranean Conference on Control and Automation, MED’04. Kusadasi, Aydin, Turkey (2004)

    Google Scholar 

  109. Nori, F., Frezza, R.: A control theory approach to the analysis and synthesis of the experimentally observed motion primitives. Biol. Cybern. 93(5), 323–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  110. Overduin, S.A., d’Avella, A., Roh, J., Bizzi, E.: Modulation of muscle synergy recruitment in primate grasping. J. Neurosci. 28(4), 880–92 (2008)

    Article  Google Scholar 

  111. Overduin, S.A., d’Avella, A., Carmena, J.M., Bizzi, E.: Microstimulation activates a handful of muscle synergies. Neuron. 76(6), 1071–1077 (2012)

    Article  Google Scholar 

  112. Overduin, S.A., d’Avella, A., Roh, J., Carmena, J.M., Bizzi, E.: Representation of muscle synergies in the primate brain. J. Neurosci. 35(37), 12615–12624 (2015)

    Article  Google Scholar 

  113. Papaxanthis, C., Pozzo, T., Schieppati, M.: Trajectories of arm pointing movements on the sagittal plane vary with both direction and speed. Exp. Brain Res. 148(4), 498–503 (2003)

    Article  Google Scholar 

  114. Papaxanthis, C., Pozzo, T., McIntyre, J.: Kinematic and dynamic processes for the control of pointing movements in humans revealed by short-term exposure to microgravity. Neuroscience 135(2), 371–383 (2005)

    Article  Google Scholar 

  115. Pauwels, E., Henrion, D., Lasserre, J.B.: Inverse optimal control with polynomial optimization. In: 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), IEEE, pp. 5581–5586 (2014)

    Google Scholar 

  116. Perreault, E.J., Chen, K., Trumbower, R.D., Lewis, G.: Interactions with compliant loads alter stretch reflex gains but not intermuscular coordination. J. Neurophysiol 99(5), 2101–2113 (2008)

    Article  Google Scholar 

  117. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Pergamon Press, Oxford (1964)

    Google Scholar 

  118. Razavian, R.S., Mehrabi, N., McPhee, J.: A model-based approach to predict muscle synergies using optimization: application to feedback control. Front Comput. Neurosci. 9 (2015)

    Google Scholar 

  119. Roh, J., Cheung, V.C.K., Bizzi, E.: Modules in the brain stem and spinal cord underlying motor behaviors. J. Neurophysiol 106(3), 1363–1378 (2011)

    Article  Google Scholar 

  120. Roh, J., Rymer, W.Z., Perreault, E.J., Yoo, S.B., Beer, R.F.: Alterations in upper limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol 109(3), 768–781 (2013)

    Article  Google Scholar 

  121. Roh, J., Rymer, W.Z., Beer, R.F.: Evidence for altered upper extremity muscle synergies in chronic stroke survivors with mild and moderate impairment. Front Hum. Neurosci. 9, 6 (2015)

    Article  Google Scholar 

  122. Romano, F., Del Prete, A., Mansard, N., Nori, F.: Prioritized optimal control: A hierarchical differential dynamic programming approach. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE, pp. 3590–3595 (2015)

    Google Scholar 

  123. de Rugy, A., Loeb, G.E., Carroll, T.J.: Muscle coordination is habitual rather than optimal. J. Neurosci. 32(21), 7384–7391 (2012)

    Article  Google Scholar 

  124. Russo, M., D’Andola, M., Portone, A., Lacquaniti, F., d’Avella, A.: Dimensionality of joint torques and muscle patterns for reaching. Front Comput. Neurosci. 8, 24 (2014)

    Article  Google Scholar 

  125. Saltiel, P., Wyler-Duda, K., D’Avella, A., Tresch, M.C., Bizzi, E.: Muscle synergies encoded within the spinal cord: evidence from focal intraspinal nmda iontophoresis in the frog. J. Neurophysiol 85(2), 605–19 (2001)

    Article  Google Scholar 

  126. Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)

    Article  Google Scholar 

  127. Schwartz, A.B.: Movement: how the brain communicates with the world. Cell 164(6), 1122–1135 (2016)

    Article  Google Scholar 

  128. Sciutti, A., Demougeot, L., Berret, B., Toma, S., Sandini, G., Papaxanthis, C., Pozzo, T.: Visual gravity influences arm movement planning. J. Neurophysiol 107(12), 3433–3445 (2012)

    Article  Google Scholar 

  129. Scott, S.H.: Optimal feedback control and the neural basis of volitional motor control. Nat. Rev. Neurosci. 5(7), 532–546 (2004)

    Article  Google Scholar 

  130. Scott, S.H.: The computational and neural basis of voluntary motor control and planning. Trends Cognitive Sci. 16(11), 541–549 (2012)

    Article  Google Scholar 

  131. Selinger, J.C., O’Connor, S.M., Wong, J.D., Donelan, J.M.: Humans can continuously optimize energetic cost during walking. Curr. Biol. 25(18), 2452–2456 (2015)

    Article  Google Scholar 

  132. Shadmehr, R.: Control of movements and temporal discounting of reward. Curr. Opin. Neurobiol. 20(6), 726–730 (2010)

    Article  Google Scholar 

  133. Shadmehr, R., Krakauer, J.W.: A computational neuroanatomy for motor control. Exp. Brain. Res. 185(3), 359–381 (2008)

    Article  Google Scholar 

  134. Shadmehr, R., Huang, H.J., Ahmed, A.A.: A representation of effort in decision-making and motor control. Curr. Biol. 26(14), 1929–1934 (2016)

    Article  Google Scholar 

  135. Sponberg, S., Daniel, T.L., Fairhall, A.L.: Dual dimensionality reduction reveals independent encoding of motor features in a muscle synergy for insect flight control. PLoS Comput. Biol. 11(e1004), 168 (2015)

    Google Scholar 

  136. Steele, K.M., Tresch, M.C., Perreault, E.J.: The number and choice of muscles impact the results of muscle synergy analyses. Front Comput. Neurosci. 7 (2013)

    Google Scholar 

  137. Taïx, M., Tran, M.T., Souères, P., Guigon, E.: Generating human-like reaching movements with a humanoid robot: a computational approach. J. Comput. Sci. 4(4), 269–284 (2013)

    Article  Google Scholar 

  138. Tanaka, H., Krakauer, J.W., Qian, N.: An optimization principle for determining movement duration. J. Neurophysiol 95(6), 3875–3886 (2006)

    Article  Google Scholar 

  139. Terekhov, A.V., Pesin, Y.B., Niu, X., Latash, M.L., Zatsiorsky, V.M.: An analytical approach to the problem of inverse optimization with additive objective functions: an application to human prehension. J. Math. Biol. 61(3), 423–453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  140. Thomas, J.S., Corcos, D.M., Hasan, Z.: Kinematic and kinetic constraints on arm, trunk, and leg segments in target-reaching movements. J. Neurophysiol 93(1), 352–364 (2005)

    Article  Google Scholar 

  141. Ting, L.H., Macpherson, J.M.: A limited set of muscle synergies for force control during a postural task. J. Neurophysiol 93(1), 609–613 (2005)

    Article  Google Scholar 

  142. Ting, L.H., McKay, J.L.: Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol 17(6), 622–628 (2007)

    Article  Google Scholar 

  143. Ting, L.H., Chiel, H.J., Trumbower, R.D., Allen, J.L., McKay, J.L., Hackney, M.E., Kesar, T.M.: Neuromechanical principles underlying movement modularity and their implications for rehabilitation. Neuron 86(1), 38–54 (2015)

    Article  Google Scholar 

  144. Todorov, E.: Optimality principles in sensorimotor control. Nat. Neurosci. 7(9), 907–915 (2004)

    Article  Google Scholar 

  145. Todorov, E.: Optimal control theory. In: Doya K (ed.) Bayesian Brain: Probabilistic Approaches to Neural Coding chap 12, pp. 269–298 (2006)

    Google Scholar 

  146. Todorov, E.: Compositionality of optimal control laws. Adv. Neural Inf. Process. Syst. 22, 1856–1864 (2009a)

    Google Scholar 

  147. Todorov, E.: Efficient computation of optimal actions. Proc. Natl. Acad. Sci. U S A 106(28), 11478–11483 (2009b)

    Article  MATH  Google Scholar 

  148. Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5(11), 1226–1235 (2002)

    Article  Google Scholar 

  149. Todorov, E., Li, W., Pan, X.: From task parameters to motor synergies: a hierarchical framework for approximately-optimal control of redundant manipulators. J. Robot Syst. 22(11), 691–710 (2005)

    Article  MATH  Google Scholar 

  150. Togo, S., Yoshioka, T., Imamizu, H.: Control strategy of hand movement depends on target redundancy. Sci. Rep. 7(45), 722 (2017)

    Google Scholar 

  151. Toma, S., Sciutti, A., Papaxanthis, C., Pozzo, T.: Visuomotor adaptation to a visual rotation is gravity dependent. J. Neurophysiol 113(6), 1885–1895 (2015)

    Article  Google Scholar 

  152. Torres-Oviedo, G., Ting, L.H.: Muscle synergies characterizing human postural responses. J. Neurophysiol 98(4), 2144–56 (2007)

    Article  Google Scholar 

  153. Torres-Oviedo, G., Ting, L.H.: Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. J. Neurophysiol 103(6), 3084–98 (2010)

    Article  Google Scholar 

  154. Torres-Oviedo, G., Macpherson, J.M., Ting, L.H.: Muscle synergy organization is robust across a variety of postural perturbations. J. Neurophysiol 96(3), 1530–1546 (2006)

    Article  Google Scholar 

  155. Tresch, M.C., Jarc, A.: The case for and against muscle synergies. Curr. Opin. Neurobiol 19(6), 601–7 (2009)

    Article  Google Scholar 

  156. Tresch, M.C., Saltiel, P., Bizzi, E.: The construction of movement by the spinal cord. Nat. Neurosci. 2(2), 162–7 (1999)

    Article  Google Scholar 

  157. Tresch, M.C., Cheung, V.C.K., d’Avella, A.: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J. Neurophysiol 95(4), 2199–2212 (2006)

    Article  Google Scholar 

  158. Turvey, M.T.: Coordination. Am. Psychol. 45(8), 938 (1990)

    Article  Google Scholar 

  159. Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. minimum torque-change model. Biol. Cybern. 61(2), 89–101 (1989)

    Article  Google Scholar 

  160. Valero-Cuevas, F.J., Venkadesan, M., Todorov, E.: Structured variability of muscle activations supports the minimal intervention principle of motor control. J. Neurophysiol 102(1), 59–68 (2009)

    Article  Google Scholar 

  161. Vu, V.H., Isableu. B., Berret, B.: Adaptive use of interaction torque during arm reaching movement from the optimal control viewpoint. Sci. Rep. 6 (2016a)

    Google Scholar 

  162. Vu, V.H., Isableu, B., Berret, B.: On the nature of motor planning variables during arm pointing movement: Compositeness and speed dependence. Neuroscience 328, 127–146 (2016b)

    Article  Google Scholar 

  163. Weiss, E.J., Flanders, M.: Muscular and postural synergies of the human hand. J. Neurophysiol 92(1), 523–535 (2004)

    Article  Google Scholar 

  164. Wolpert, D.M., Landy, M.S.: Motor control is decision-making. Curr. Opin. Neurobiol. 22(6), 996–1003 (2012)

    Article  Google Scholar 

  165. Yamamoto, S., Kushiro, K.: Direction-dependent differences in temporal kinematics for vertical prehension movements. Exp. Brain Res. 232(2), 703–711 (2014)

    Article  Google Scholar 

  166. Yandell, M.B., Zelik, K.E.: Preferred barefoot step frequency is influenced by factors beyond minimizing metabolic rate. Sci. Rep. 6 (2016)

    Google Scholar 

  167. Zelik, K.E., Kuo, A.D.: Mechanical work as an indirect measure of subjective costs influencing human movement. PLoS One 7(2), e31,143 (2012)

    Google Scholar 

Download references

Acknowledgements

This work is supported by a public grant overseen by the French National research Agency (ANR) as part of the Investissement d Avenir program, through the iCODE project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastien Berret .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix, we provide a tutorial example illustrating the concepts of optimality and modularity that we discussed in the main text.

To this aim, we consider a simple controlled pendulum whose dynamic equation is

$$ \ddot{\theta }=-\theta +u $$

where \(\theta \) is the angular position and u the input torque. This may represent a simplified human arm model in the gravity field (with normalized anthropometry and small angle assumption).

We define an optimal control problem as follows: find the controller that drives the system from a given state \(x_{0}=(\theta _{0},\dot{\theta }_{0})\) to a final state \(x_{f}=(\theta _{f},\dot{\theta }_{f})\) in time T and minimizes the cost function

$$ C(u)=\int \limits _{0}^{T}[u^{2}+\theta ^{2}+\dot{\theta }^{2}]dt. $$

This is a linear-quadratic (LQ) problem of the form \(\dot{x}=Ax+Bu\) (linear dynamics) and \(C(u)=\int _{0}^{T}u^{T}Ru+x^{T}Qxdt\) (quadratic optimality criterion) where the matrices are identified as follows:

$$ A=\left( \begin{array}{cc} 0 &{} 1\\ -1 &{} 0 \end{array}\right) ,\,B=\left( \begin{array}{c} 0\\ 1 \end{array}\right) ,\,R=1,\,Q=I. $$

It can be shown that the optimal control can be written formally as (see [51] for mathematical proofs):

$$\begin{aligned} u(t)=-B^{T}P_{+}\text {e}^{A_{+}t}p-B^{T}P_{-}\text {e}^{A_{-}(t-T)}q \end{aligned}$$
(5)

where \(P_{+}\) and \(P_{-}\) are the maximal and minimal solutions of the associated Riccati equation \(PA+A^{T}P-PBB^{T}P+Q=0\). The matrices \(A_{+}\) and \(A_{-}\) are defined as \(A_{+}=A-BB^{T}P_{+}\) and \(A_{-}=A-BB^{T}P_{-}\), and p and q are some vectors depending on the initial/final states and on movement duration T. Importantly, the matrices \(P_{\pm }\) and \(A_{\pm }\) just depend on the optimal control problem specification, i.e. the matrices \(A,B,R,\,\text {and}\,Q\).

The optimal control u(t) can thus be written as a function of the eigenvalues of \(A_{\pm }.\) Simple computations show that the 4 eigenvalues are of the form \(\pm \alpha \pm \text {i}\beta \) with \(\alpha =\sqrt{(2\sqrt{2}-1)}/2\) and \(\beta =\sqrt{(2\sqrt{2}+1)}/2.\)

Therefore, the optimal control can be rewritten as the following linear combination:

$$ u(t)=a_{1}\text {e}^{-\alpha t}\cos (\beta t)+a_{2}\text {e}^{\alpha t}\cos (\beta t)+a_{3}\text {e}^{-\alpha t}\sin (\beta t)+a_{4}\text {e}^{\alpha t}\sin (\beta t), $$

where the coefficients \((a_{i})_{1\le i\le 4}\) have to be adjusted depending on the constraints \(x(0)=(\theta _{0},\dot{\theta }_{0})\,\text {and}\,x(T)=(\theta _{f},\dot{\theta }_{f})\).

In summary, this simple example illustrates that for this system all optimal motor commands can be decomposed as follows:

$$ u(t)=\sum _{i=1}^{4}a_{i}v_{i}(t) $$

where the functions \(v_{i}(t)\) are time-varying primitives that are invariants of the problem and can thus be stored once for all (modularity). In contrast, the activation coefficients \(a_{i}\) must be set for each single movement in order to start/end in the adequate states and times. Note the similarity between the present equations and Eq. 3 in the main text. Storing invariant building blocks \(v_{i}\) and adjusting activation coefficients \(a_{i}\) in order to produce controllers that allow task achievement in an optimal fashion are the core concepts discussed in the present Chapter. It is worth noting that the same conclusion could actually be drawn for any well-defined LQ problem given the general form of Eq. 5.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berret, B., Delis, I., Gaveau, J., Jean, F. (2019). Optimality and Modularity in Human Movement: From Optimal Control to Muscle Synergies. In: Venture, G., Laumond, JP., Watier, B. (eds) Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-319-93870-7_6

Download citation

Publish with us

Policies and ethics