Abstract
The potential of data analytics to improve business processes is commonly recognized. Despite the general enthusiasm, the implementation of data-driven methods in production environments remains low. Although established models, such as CRISP-DM, offer a structured process in order to deploy data analytics in the industry, manufacturing companies still need to choose a starting point, assess the business benefit, and determine a pragmatic course of action. In this paper, we introduce an approach to handle these issues based on a case study from automotive manufacturing. The results are discussed based on a set of requirements derived from the case study.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Khan, A., Turowski, K.: A survey of current challenges in manufacturing industry and preparation for industry 4.0. In: Abraham, A., Kovalev, S., Tarassov, V., Snášel, V. (eds.) Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry” (IITI 2016). AISC, vol. 450, pp. 15–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33609-1_2
Jacob, F., Strube, G.: Why go global? The multinational imperative. In: Abele, E., Meyer, T., Näher, U., Strube, G., Sykes, R. (eds.) Global Production, pp. 2–33. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71653-2_1
Slack, N., Chambers, S., Johnston, R.: Operations Management. Pearson Education, New York (2010)
Bryant, R., Katz, R.H., Lazowska, E.D.: Big-data computing: creating revolutionary breakthroughs in commerce, science and society (2008)
Raval, K.M.: Data mining techniques. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2(10) (2012)
Couldry, N., Powell, A.: Big data from the bottom up. Big Data Soc. 1(2), 2053951714539277 (2014)
Lovelace, R.: The data revolution: big data, open data, data infrastructures and their consequences, by rob kitchin. 2014. Thousand Oaks, California: Sage Publications. 222+XVII. ISBN: 978-1446287484. J. Reg. Sci. 56(4), 722–723 (2016)
McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D., Barton, D.: Big data: the management revolution. Harvard Bus. Rev. 90(10), 61–67 (2012)
Gartner: Data lake. Gartner IT Glossary (2017)
Held, J.: Will data lakes turn into data swamps or data reservoirs? (2014)
Han, J., Kamber, M., Pei, J.: Mining frequent patterns, associations, and correlations. In: Data Mining: Concepts and Techniques, 2nd edn., pp. 227–283. Morgan Kaufmann Publishers, San Francisco (2006)
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM 39(11), 27–34 (1996)
Hirmer, P., Behringer, M.: FlexMash 2.0 - flexible modeling and execution of data Mashups. In: Daniel, F., Gaedke, M. (eds.) RMC 2016. CCIS, vol. 696, pp. 10–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53174-8_2
Hirmer, P., Wieland, M., Schwarz, H., Mitschang, B., Breitenbücher, U., Sáez, S.G., Leymann, F.: Situation recognition and handling based on executing situation templates and situation-aware workflows. Computing 99, 163–181 (2017)
Wieland, M., Hirmer, P., Steimle, F., Gröger, C., Mitschang, B., Rehder, E., Lucke, D., Rahman, O.A., Bauernhansl, T.: Towards a rule-based manufacturing integration assistant. In: Westkämper, E., Bauernhansl, T. (eds.) Proceedings of the 49th CIRP Conference on Manufacturing Systems (CIRP-CMS 2016), Stuttgart, Germany, 25–27 May 2016, Procedia CIRP, vol. 57, pp. 213–218. Elsevier, January 2017
Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp. 3928–3937, January 2016
Tönne, A.: Big Data is no longer equivalent to Hadoop in the industry. In: Proceedings of 17. Datenbanksysteme für Business, Technologie und Web (BTW) (2017)
Hagerty, J.: 2017 planning guide for data and analytics (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Ghabri, R., Hirmer, P., Mitschang, B. (2018). A Hybrid Approach to Implement Data Driven Optimization into Production Environments. In: Abramowicz, W., Paschke, A. (eds) Business Information Systems. BIS 2018. Lecture Notes in Business Information Processing, vol 320. Springer, Cham. https://doi.org/10.1007/978-3-319-93931-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-93931-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93930-8
Online ISBN: 978-3-319-93931-5
eBook Packages: Computer ScienceComputer Science (R0)