Skip to main content

Movement Detection Algorithm for Patients with Hip Surgery

  • Conference paper
  • First Online:
International Joint Conference SOCO’18-CISIS’18-ICEUTE’18 (SOCO’18-CISIS’18-ICEUTE’18 2018)

Abstract

This work proposes a model of movement detection in patients with hip surgery rehabilitation. Using the Microsoft Xbox One Kinect motion capture device, information is acquired from 25 body points -with their respective coordinate axes- of patients while doing rehabilitation exercises. Bayesian networks and sUpervised Classification System (UCS) techniques have been jointly applied to identify correct and incorrect movements. The proposed system generates a multivalent logical model, which allows the simultaneous representation of the exercises performed by patients with good precision. It can be a helpful tool to guide rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrios, L.J., Hornero, R., Perez-Turiel, J., Pons, J.L., Vidal, J., Azorin, J.M.: State of the art in neurotechnologies for assistance and rehabilitation in spain: fundamental technologies. Revista Iberoamericana De Automatica E Informatica Industrial 14(4), 346–354 (2017)

    Article  Google Scholar 

  2. Akdoğan, E., Adli, M.A.: The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot. Mechatronics 21(3), 509–522 (2011)

    Article  Google Scholar 

  3. Schmidt, H., Werner, C., Bernhardt, R., Hesse, S., Krüger, J.: Gait rehabilitation machines based on programmable footplates. J. Neuroeng. Rehab. 4(1), 2 (2007)

    Article  Google Scholar 

  4. Duschau-Wicke, A., Caprez, A., Riener, R.: Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. J. Neuroeng. Rehab. 7(1), 43 (2010)

    Article  Google Scholar 

  5. Kazerooni, H., Steger, R., Huang, L.: Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX). Int. J. Robot. Res. 25(5–6), 561–573 (2006)

    Article  Google Scholar 

  6. Jovanov, E., Milenkovic, A., Otto, C., De Groen, P.C.: A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J. NeuroEng. Rehab. 2(1), 6 (2005)

    Article  Google Scholar 

  7. msdn.microsoft.com/en-us/library/microsoft.kinect.kinect.cameraintrinsics.aspx

  8. Rybarczyk, Y., Deters, J.K., Gonzalo, A.A., Esparza, D., Gonzalez, M., Villarreal, S., Nunes, I.L.: Recognition of physiotherapeutic exercises through DTW and low-cost vision-based motion capture. In: International Conference on Applied Human Factors and Ergonomics, pp. 348–360. Springer, Cham, July, 2017

    Google Scholar 

  9. Ayed, I., Moyà-Alcover, B., Martínez-Bueso, P., Varona, J., Ghazel, A., Jaume-i-Capó, A.: Validación de dispositivos RGBD para medir terapéuticamente el equilibrio: el test de alcance funcional con Microsoft Kinect. Revista Iberoamericana de Automática e Informática Industrial RIAI 14(1), 115–120 (2017)

    Article  Google Scholar 

  10. Gevrey, M., Dimopoulos, I., Lek, S.: Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological. Model. 160(3), 249–264 (2003)

    Article  Google Scholar 

  11. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43(6), 1656–1671 (2013)

    Article  Google Scholar 

  12. Bielza, C., Larrañaga, P.: Discrete Bayesian network classifiers: a survey. ACM Computing. Surv. 47(1), 5 (2014)

    Article  Google Scholar 

  13. Wilson, S.W.: Classifier fitness based on accuracy. Evol. Comput. 3(2), 149–175 (1995)

    Article  Google Scholar 

  14. Bernadó-Mansilla, E., Garrell-Guiu, J.M.: Accuracy-based learning classifier systems: models, analysis and applications to classification tasks. Evol. Comput. 11(3), 209–238 (2003)

    Article  Google Scholar 

  15. Quinlan, J.R.: C4.5: Programming for Machine Learning. Morgan Kauffmann, San Francisco (1993)

    Google Scholar 

  16. Hühn, J., Hüllermeier, E.: FURIA: an algorithm for unordered fuzzy rule induction. Data Mining Knowl. Discov. 19(3), 293–319 (2009)

    Article  MathSciNet  Google Scholar 

  17. Cohen, W.W.: Fast effective rule induction. In: 1995 Machine Learning Proceedings, pp. 115–123 (1995)

    Chapter  Google Scholar 

  18. https://archive.ics.uci.edu/ml/datasets/Iris

Download references

Acknowledgments

We want to thank the Ecuadorian Corporation for the Development of Research and the Academy (CEDIA) for the support given to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar Guevara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guevara, C., Santos, M., Jadán, J. (2019). Movement Detection Algorithm for Patients with Hip Surgery. In: Graña, M., et al. International Joint Conference SOCO’18-CISIS’18-ICEUTE’18. SOCO’18-CISIS’18-ICEUTE’18 2018. Advances in Intelligent Systems and Computing, vol 771. Springer, Cham. https://doi.org/10.1007/978-3-319-94120-2_42

Download citation

Publish with us

Policies and ethics