Abstract
In this paper, we introduce a novel algorithm to solve projected model counting (PMC). PMC asks to count solutions of a Boolean formula with respect to a given set of projected variables, where multiple solutions that are identical when restricted to the projected variables count as only one solution. Our algorithm exploits small treewidth of the primal graph of the input instance. It runs in time \({\mathcal O}(2^{2^{k+4}} n^2)\) where k is the treewidth and n is the input size of the instance. In other words, we obtain that the problem PMC is fixed-parameter tractable when parameterized by treewidth. Further, we take the exponential time hypothesis (ETH) into consideration and establish lower bounds of bounded treewidth algorithms for PMC, yielding asymptotically tight runtime bounds of our algorithm.
The work has been supported by the Austrian Science Fund (FWF), Grants Y698 and P26696, and the German Science Fund (DFG), Grant HO 1294/11-1. The first two authors are also affiliated with the University of Potsdam, Germany.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Actually, \(\mathbb {SAT}\) takes in addition as input PP-Tabs, which contains a mapping of nodes of the tree decomposition to tables, i.e., tables of the previous pass. Later, we use this for a second traversal to pass results (
) from the first traversal to the table algorithm \(\mathbb {PROJ} \) for projected model counting in the second traversal.
References
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level, 1st edn. Addison-Wesley, Boston (1995)
Abramson, B., Brown, J., Edwards, W., Murphy, A., Winkler, R.L.: Hailfinder: a Bayesian system for forecasting severe weather. Int. J. Forecast. 12(1), 57–71 (1996)
Aziz, R.A., Chu, G., Muise, C., Stuckey, P.: \(\#\exists \)SAT: projected model counting. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 121–137. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_10
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)
Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)
Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)
Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)
Bondy, J.A., Murty, U.S.R.: Graph theory, Graduate Texts in Mathematics, vol. 244. Springer Verlag, New York (2008)
Chakraborty, S., Meel, K.S., Vardi, M.Y.: Improving approximate counting for probabilistic inference: from linear to logarithmic SAT solver calls. In: Kambhampati, S. (ed.) Proceedings of 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 3569–3576. The AAAI Press, New York City, July 2016
Charwat, G., Woltran, S.: Dynamic programming-based QBF solving. In: Lonsing, F., Seidl, M. (eds.) Proceedings of the 4th International Workshop on Quantified Boolean Formulas (QBF 2016), vol. 1719, pp. 27–40. CEUR Workshop Proceedings (CEUR-WS.org) (2016). Co-located with 19th International Conference on Theory and Applications of Satisfiability Testing (SAT 2016)
Choi, A., Van den Broeck, G., Darwiche, A.: Tractable learning for structured probability spaces: a case study in learning preference distributions. In: Yang, Q. (ed.) Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI 2015). The AAAI Press (2015)
Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3
Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)
Domshlak, C., Hoffmann, J.: Probabilistic planning via heuristic forward search and weighted model counting. J. Artif. Intell. Res. 30, 565–620 (2007)
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1
Dueñas-Osorio, L., Meel, K.S., Paredes, R., Vardi, M.Y.: Counting-based reliability estimation for power-transmission grids. In: Singh, S.P., Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI 2017), pp. 4488–4494. The AAAI Press, February 2017
Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for counting complexity classes. Theor. Comput. Sci. 340(3), 496–513 (2005)
Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Answer set solving with bounded treewidth revisited. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 132–145. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5_13
Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: DynASP2.5: dynamic programming on tree decompositions in action. In: Lokshtanov, D., Nishimura, N. (eds.) Proceedings of the 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Dagstuhl Publishing (2017)
Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCS, vol. XIV. Springer, Berlin (2006). https://doi.org/10.1007/3-540-29953-X
Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large biological networks with answer set programming. Theory Pract. Log. Program. 11(2–3), 323–360 (2011)
Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean search problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 71–86. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01929-6_7
Ginsberg, M.L., Parkes, A.J., Roy, A.: Supermodels and robustness. In: Rich, C., Mostow, J. (eds.) Proceedings of the 15th National Conference on Artificial Intelligence and 10th Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI 1998), pp. 334–339. The AAAI Press, Madison, July 1998
Gomes, C.P., Sabharwal, A., Selman, B.: Chapter 20: model counting. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 633–654. IOS Press, Amsterdam (2009)
Graham, R.L., Grötschel, M., Lovász, L.: Handbook of Combinatorics, vol. I. Elsevier Science Publishers, North-Holland (1995)
Harvey, D., van der Hoeven, J., Lecerf, G.: Even faster integer multiplication. J. Complex. 36, 1–30 (2016)
Hemaspaandra, L.A., Vollmer, H.: The satanic notations: Counting classes beyond #P and other definitional adventures. SIGACT News 26(1), 2–13 (1995)
Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)
Kleine Büning, H., Lettman, T.: Propositional Logic: Deduction and Algorithms. Cambridge University Press, Cambridge (1999)
Knuth, D.E.: How fast can we multiply? In: The Art of Computer Programming, Seminumerical Algorithms, 3 edn., vol. 2, chap. 4.3.3, pp. 294–318. Addison-Wesley (1998)
Lagniez, J.M., Marquis, P.: An improved decision-DNNF compiler. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI 2017). The AAAI Press (2017)
Lampis, M., Mitsou, V.: Treewidth with a quantifier alternation revisited. In: Lokshtanov, D., Nishimura, N. (eds.) Proceedings of the 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Dagstuhl Publishing (2017)
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and its Applications, vol. 31. Oxford University Press, New York (2006)
Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)
Pichler, R., Rümmele, S., Woltran, S.: Counting and enumeration problems with bounded treewidth. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 387–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4_22
Pourret, O., Naim, P., Bruce, M.: Bayesian Networks - A Practical Guide to Applications. Wiley, Hoboken (2008)
Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1–2), 273–302 (1996)
Sæther, S.H., Telle, J.A., Vatshelle, M.: Solving #SAT and MAXSAT by dynamic programming. J. Artif. Intell. Res. 54, 59–82 (2015)
Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A Bayesian approach to filtering junk e-mail. In: Joachims, T. (ed.) Proceedings of the AAAI-98 Workshop on Learning for Text Categorization, vol. 62, pp. 98–105 (1998)
Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discret. Algorithms 8(1), 50–64 (2010)
Sang, T., Beame, P., Kautz, H.: Performing Bayesian inference by weighted model counting. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings of the 29th National Conference on Artificial Intelligence (AAAI 2005). The AAAI Press (2005)
Valiant, L.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)
Wilder, R.L.: Introduction to the Foundations of Mathematics, 2nd edn. Wiley, New York (1965)
Xue, Y., Choi, A., Darwiche, A.: Basing decisions on sentences in decision diagrams. In: Hoffmann, J., Selman, B. (eds.) Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI 2012). The AAAI Press (2012)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Fichte, J.K., Hecher, M., Morak, M., Woltran, S. (2018). Exploiting Treewidth for Projected Model Counting and Its Limits. In: Beyersdorff, O., Wintersteiger, C. (eds) Theory and Applications of Satisfiability Testing – SAT 2018. SAT 2018. Lecture Notes in Computer Science(), vol 10929. Springer, Cham. https://doi.org/10.1007/978-3-319-94144-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-94144-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94143-1
Online ISBN: 978-3-319-94144-8
eBook Packages: Computer ScienceComputer Science (R0)