Skip to main content

Chronological Backtracking

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2018 (SAT 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10929))

Abstract

Non-Chronological Backtracking (NCB) has been implemented in every modern CDCL SAT solver since the original CDCL solver GRASP. NCB’s importance has never been questioned. This paper argues that NCB is not always helpful. We show how one can implement the alternative to NCB–Chronological Backtracking (CB)–in a modern SAT solver. We demonstrate that CB improves the performance of the winner of the latest SAT Competition, Maple_LCM_Dist, and the winner of the latest MaxSAT Evaluation Open-WBO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the standard algorithm, cl is always equal to the current decision level, but, as we shall see, that is not the case for CB.

References

  1. Ansotegui, C., Bacchus, F., Järvisalo, M., Martins, R. (eds.): MaxSAT evaluation 2017: solver and benchmark descriptions, Department of Computer Science Series of Publications B. University of Helsinki, vol. B-2017-2 (2017)

    Google Scholar 

  2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam (2009)

    Google Scholar 

  3. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  4. Frost, D., Dechter, R.: In search of the best constraint satisfaction search. In: AAAI, pp. 301–306 (1994)

    Google Scholar 

  5. Heule, M., Järvisalo, M., Balyo, T.: SAT competition (2017). https://baldur.iti.kit.edu/sat-competition-2017/

  6. Katebi, H., Sakallah, K.A., Marques-Silva, J.P.: Empirical study of the anatomy of modern SAT solvers. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 343–356. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0_27

    Chapter  MATH  Google Scholar 

  7. Luo, M., Li, C.-M., Xiao, F., Manyà, F., Lü, Z.: An effective learnt clause minimization approach for CDCL SAT solvers. In: Sierra, C. (ed.), Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 703–711 (2017). ijcai.org

  8. Nadel, A., Ryvchin, V.: Chronological backtracking: solvers. goo.gl/ssukuu

  9. Neves, M., Martins, R., Janota, M., Lynce, I., Manquinho, V.: Exploiting resolution-based representations for MaxSAT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 272–286. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_20

    Chapter  Google Scholar 

  10. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–299. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72788-0_28

    Chapter  Google Scholar 

  11. Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Comput. Intell. 9(3), 268–299 (1993)

    Article  Google Scholar 

  12. Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere et al. 2, pp. 131–153

    Google Scholar 

  13. Marques Silva, J.P., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: ICCAD, pp. 220–227 (1996)

    Google Scholar 

  14. Shtrichman, O.: Tuning SAT checkers for bounded model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 480–494. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_36

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Ryvchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nadel, A., Ryvchin, V. (2018). Chronological Backtracking. In: Beyersdorff, O., Wintersteiger, C. (eds) Theory and Applications of Satisfiability Testing – SAT 2018. SAT 2018. Lecture Notes in Computer Science(), vol 10929. Springer, Cham. https://doi.org/10.1007/978-3-319-94144-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94144-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94143-1

  • Online ISBN: 978-3-319-94144-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics