Abstract
Recent years have witnessed an increase in demand for biometrics based identification, authentication and access control (BIA) systems, which offer convenience, ease of use, and (in some cases) improved security. In contrast to other methods, such as passwords or pins, BIA systems face new unique challenges; chiefly among them is ensuring long-term confidentiality of biometric data stored in backends, as such data has to be secured for the lifetime of an individual. Cryptographic approaches such as Fuzzy Extractors (FE) and Fuzzy Vaults (FV) have been developed to address this challenge. FE/FV do not require storing any biometric data in backends, and instead generate and store helper data that enables BIA when a new biometric reading is supplied. Security of FE/FV ensures that an adversary obtaining such helper data cannot (efficiently) learn the biometric. Relying on such cryptographic approaches raises the following question: what happens when helper data is lost or destroyed (e.g., due to a failure, or malicious activity), or when new helper data has to be generated (e.g., in response to a breach or to update the system)? Requiring a large number of users to physically re-enroll is impractical, and the literature falls short of addressing this problem. In this paper we develop SNUSE, a secure computation based approach for non-interactive re-enrollment of a large number of users in BIA systems. We prototype SNUSE to illustrate its feasibility, and evaluate its performance and accuracy on two biometric modalities, fingerprints and iris scans. Our results show that thousands of users can be securely re-enrolled in seconds without affecting the accuracy of the system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We omit explicitly mentioning access control, we assume it implicitly when authenticating an individual and then granting access based on the authenticated identity.
- 2.
We use the term “encode” very loosely here as helper data may not actually encode the secret, it may only enable constructing it when the biometric is also present.
- 3.
Available at: http://sprout.ics.uci.edu/people/ivan/pubs/2018_snuse.pdf.
- 4.
In our notation the first row/column of a matrix is indexed by 1 and not 0.
References
Jain, A.K., Bolle, R.M., Pankanti, S.: Biometrics: Personal Identification in Networked Society, vol. 479. Springer, New York (2006). https://doi.org/10.1007/978-0-387-32659-7
Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and privacy in biometrics-based authentication systems. IBM Syst. J. 40(3), 614–634 (2001)
Wikipedia: Office of Personnel Management data breach. https://en.wikipedia.org/wiki/Office_of_Personnel_Management_data_breach. Accessed 5 Dec 2017
Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Cryptogr. 38(2), 237–257 (2006). https://doi.org/10.1007/s10623-005-6343-z
Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_10
Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98. ACM (2006)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science, SFCS ’08, pp. 160–164. IEEE (1982)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM (1989)
Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34
Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_22
Kiayias, A., Yung, M.: Cryptographic hardness based on the decoding of Reed-Solomon codes. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 232–243. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_21
Itkis, G., Chandar, V., Fuller, B.W., Campbell, J.P., Cunningham, R.K.: Iris biometric security challenges and possible solutions: for your eyes only? Using the iris as a key. IEEE Sig. Process. Mag. 32(5), 42–53 (2015)
Nandakumar, K., Jain, A.K., Pankanti, S.: Fingerprint-based fuzzy vault: implementation and performance. IEEE Trans. Inf. Forensics Secur. 2(4), 744–757 (2007)
Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31
Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authentication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_9
Yao, A.C.-C.: How to generate and exchange secrets. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science. SFCS 1986, pp. 162–167. IEEE Computer Society, Washington, DC (1986). https://doi.org/10.1109/SFCS.1986.25
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC 1988. ACM (1988)
Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1
Archer, D.W., Bogdanov, D., Pinkas, B., Pullonen, P.: Maturity and performance of programmable secure computation. In: IEEE S & P (2016)
Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for realistic adversaries. J. Cryptol. 23(2), 281–343 (2010). https://doi.org/10.1007/s00145-009-9040-7
Huang, Y., Katz, J., Evans, D.: Quid-Pro-Quo-tocols: strengthening semi-honest protocols with dual execution. In: IEEE S & P 2012. IEEE Computer Society (2012)
Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and covert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_10
Baron, J., El Defrawy, K., Minkovich, K., Ostrovsky, R., Tressler, E.: 5PM: secure pattern matching. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 222–240. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_13
Acknowledgement
This work was funded by the US Department of Homeland Security (DHS) Science and Technology (S&T) Directorate under contract no. HSHQDC-16-C-00034. The views and conclusions contained herein are the authors’ and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DHS or the US government.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
De Oliveira Nunes, I., Eldefrawy, K., Lepoint, T. (2018). Secure Non-interactive User Re-enrollment in Biometrics-Based Identification and Authentication Systems. In: Dinur, I., Dolev, S., Lodha, S. (eds) Cyber Security Cryptography and Machine Learning. CSCML 2018. Lecture Notes in Computer Science(), vol 10879. Springer, Cham. https://doi.org/10.1007/978-3-319-94147-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-94147-9_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94146-2
Online ISBN: 978-3-319-94147-9
eBook Packages: Computer ScienceComputer Science (R0)