Skip to main content

Automated Reasoning About Key Sets

  • Conference paper
  • First Online:
Automated Reasoning (IJCAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10900))

Included in the following conference series:

Abstract

Codd’s rule of entity integrity stipulates that every table in a database has a primary key. Hence, the attributes that form the primary key carry no missing information and have unique value combinations. In practice, data records cannot always meet such requirements. Previous work has proposed the notion of a key set, which can identify more data records uniquely when information is missing. Apart from the proposal, key sets have not been investigated much further. We outline important database applications, and investigate computational limits and techniques to reason automatically about key sets. We establish a binary axiomatization for the implication problem of key sets, and prove its coNP-completeness. We show that perfect models do not always exist for key sets. Finally, we show that the implication problem for unary key sets by arbitrary key sets has better computational properties. The fragment enjoys a unary axiomatization, is decidable in time quadratic in the input, and perfect models can always be generated.

Research is supported by Marsden funding from the Royal Society of New Zealand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: a survey. VLDB J. 24(4), 557–581 (2015)

    Article  Google Scholar 

  2. Bläsius, T., Friedrich, T., Schirneck, M.: The parameterized complexity of dependency detection in relational databases. In: IPEC 2016, 24–26 August 2016, pp. 6:1–6:13 (2016)

    Google Scholar 

  3. Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their interaction with functional dependencies. J. Comput. Syst. Sci. 28(1), 29–59 (1984)

    Article  MathSciNet  Google Scholar 

  4. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)

    Article  Google Scholar 

  5. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and generating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)

    Article  MathSciNet  Google Scholar 

  6. Hannula, M., Kontinen, J., Link, S.: On the finite and general implication problems of independence atoms and keys. J. Comput. Syst. Sci. 82(5), 856–877 (2016)

    Article  MathSciNet  Google Scholar 

  7. Hartmann, S., Leck, U., Link, S.: On Codd families of keys over incomplete relations. Comput. J. 54(7), 1166–1180 (2011)

    Article  Google Scholar 

  8. Köhler, H., Leck, U., Link, S., Zhou, X.: Possible and certain keys for SQL. VLDB J. 25(4), 571–596 (2016)

    Article  Google Scholar 

  9. Köhler, H., Link, S.: Inclusion dependencies and their interaction with functional dependencies in SQL. J. Comput. Syst. Sci. 85, 104–131 (2017)

    Article  MathSciNet  Google Scholar 

  10. Langeveldt, W., Link, S.: Empirical evidence for the usefulness of Armstrong relations in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3), 352–374 (2010)

    Article  Google Scholar 

  11. Levene, M., Loizou, G.: A generalisation of entity and referential integrity in relational databases. ITA 35(2), 113–127 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Lucchesi, C.L., Osborn, S.L.: Candidate keys for relations. J. Comput. Syst. Sci. 17(2), 270–279 (1978)

    Article  MathSciNet  Google Scholar 

  13. Thalheim, B.: Dependencies in Relational Databases. Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-663-12018-6

    Book  MATH  Google Scholar 

  14. Thalheim, B.: On semantic issues connected with keys in relational databases permitting null values. Elektronische Informationsverarbeitung und Kybernetik 25(1/2), 11–20 (1989)

    MathSciNet  Google Scholar 

  15. Thalheim, B.: The number of keys in relational and nested relational databases. Discret. Appl. Math. 40(2), 265–282 (1992)

    Article  MathSciNet  Google Scholar 

  16. Wei, Z., Link, S., Liu, J.: Contextual keys. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 266–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69904-2_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Link .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hannula, M., Link, S. (2018). Automated Reasoning About Key Sets. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds) Automated Reasoning. IJCAR 2018. Lecture Notes in Computer Science(), vol 10900. Springer, Cham. https://doi.org/10.1007/978-3-319-94205-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94205-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94204-9

  • Online ISBN: 978-3-319-94205-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics