Skip to main content

Throughput Analysis for Energy Harvesting Cognitive Radio Networks with Unslotted Users

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10874))

Abstract

Considering a cognitive radio network (CRN) with the energy harvesting (EH) capability, we design a sensing-based flexible timeslot structure for a secondary transmitter (ST). This structure focuses on an unslotted transmission mode between two primary users (PUs). In this structure, the ST can decide whether to transmit data or to harvest energy based on the sensing results. Aiming to maximize the long-term average achievable throughput of the secondary system, we study an optimal policy, including the optimal energy harvesting time as well as the optimal transmit power. To reduce the computational complexity, we also derive an effective suboptimal policy by maximizing the upper bound on the throughput. Finally, simulation results demonstrate that the proposed flexible timeslot structure outperforms the conventional fixed timeslot structure in terms of average achievable throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, we consider a single-user unslotted primary system without sensing ability, so ST’s transmit may not prevent the PT from reactivation.

  2. 2.

    Similar to [19], \(\lambda _1\) and \(\lambda _0\) can be known at an ST by probing the channel in a specified learning period.

References

  1. Ren, J., Hu, J., Zhang, D., Guo, H., Zhang, Y., Shen, X.: RF energy harvesting and transfer in cognitive radio sensor networks: opportunities and challenges. IEEE Commun. Mag. 56(1), 104–110 (2018)

    Article  Google Scholar 

  2. Ahmed, M.E., Kim, D.I., Kim, J.Y., Shin, Y.: Energy-arrival-aware detection threshold in wireless-powered cognitive radio networks. IEEE Trans. Veh. Technol. 66(10), 9201–9213 (2017)

    Article  Google Scholar 

  3. Cheng, S., Cai, Z., Li, J., Gao, H.: Extracting kernel dataset from big sensory data in wireless sensor networks. IEEE Trans. Knowl. Data Eng. 29(4), 813–827 (2017)

    Article  Google Scholar 

  4. Li, J., Cheng, S., Li, Y., Cai, Z.: Approximate holistic aggregation in wireless sensor networks. In: IEEE International Conference on Distributed Computing Systems, p. 11 (2015)

    Google Scholar 

  5. Cheng, S., Cai, Z., Li, J., Fang, X.: Drawing dominant dataset from big sensory data in wireless sensor networks. In: Computer Communications, pp. 531–539 (2015)

    Google Scholar 

  6. Shi, T., Cheng, S., Cai, Z., Li, J.: Adaptive connected dominating set discovering algorithm in energy-harvest sensor networks. In: IEEE INFOCOM 2016 - The IEEE International Conference on Computer Communications, pp. 1–9 (2016)

    Google Scholar 

  7. Shi, T., Cheng, S., Cai, Z., Li, Y., Li, J.: Exploring connected dominating sets in energy harvest networks. IEEE/ACM Trans. Netw. 25(3), 1803–1817 (2017)

    Article  Google Scholar 

  8. Yin, S., Qu, Z., Li, S.: Achievable throughput optimization in energy harvesting cognitive radio systems. IEEE J. Sel. Areas Commun. 33(3), 407–422 (2015)

    Article  Google Scholar 

  9. Hu, C., Li, H., Huo, Y., Xiang, T., Liao, X.: Secure and efficient data communication protocol for wireless body area networks. IEEE Trans. Multi-Scale Comput. Syst. 2(2), 94–107 (2016)

    Article  Google Scholar 

  10. Zhang, F., Jing, T., Huo, Y., Jiang, K.: Outage probability minimization for energy harvesting cognitive radio sensor networks. Sensors 17(2), 224 (2017)

    Article  Google Scholar 

  11. Hu, C., Li, R., Mei, B., Li, W., Alrawais, A., Bie, R.: Privacy-preserving combinatorial auction without an auctioneer. EURASIP J. Wirel. Commun. Netw. 2018(1), 38 (2018)

    Article  Google Scholar 

  12. Yun, H.B., Baek, J.W.: Achievable throughput analysis of opportunistic spectrum access in cognitive radio networks with energy harvesting. IEEE Trans. Commun. 64(4), 1399–1410 (2016)

    Article  Google Scholar 

  13. Yadav, R., Singh, K., Gupta, A., Kumar, A.: Optimal energy-efficient resource allocation in energy harvesting cognitive radio networks with spectrum sensing. In: Vehicular Technology Conference, pp. 1–5 (2017)

    Google Scholar 

  14. Xu, B., Chen, Y., Carrin, J.R., Zhang, T.: Resource allocation in energy-cooperation enabled two-tier NOMA hetnets toward green 5G. IEEE J. Sel. Areas Commun. 35(12), 2758–2770 (2017)

    Article  Google Scholar 

  15. Zhang, R., Chen, H., Yeoh, P.L., Li, Y., Vucetic, B.: Full-duplex cooperative cognitive radio networks with wireless energy harvesting. In: IEEE International Conference on Communications (2017)

    Google Scholar 

  16. Ozcan, G., Gursoy, M.C., Tang, J.: Spectral and energy efficiency in cognitive radio systems with unslotted primary users and sensing uncertainty. IEEE Trans. Commun. 65(10), 4138–4151 (2017)

    Google Scholar 

  17. Ozcan, G., Gursoy, M.C., Tang, J.: Power control for cognitive radio systems with unslotted primary users under sensing uncertainty. In: IEEE International Conference on Communications, pp. 1428–1433 (2015)

    Google Scholar 

  18. Zhang, F., Jing, T., Huo, Y., Jiang, K.: Throughput optimization for energy harvesting cognitive radio networks with save-then-transmit protocol. Comput. J. 60(6), 911–924 (2017)

    Article  Google Scholar 

  19. Messina, A.: Power and transmission duration control in un-slotted cognitive radio networks. In: Computer Applications and Information Systems, pp. 1–6 (2014)

    Google Scholar 

  20. Pratibha, P., Li, K.H., Teh, K.C.: Optimal spectrum access and energy supply for cognitive radio systems with opportunistic RF energy harvesting. IEEE Trans. Veh. Technol. 66(8), 7114–7122 (2017)

    Article  Google Scholar 

  21. Che, Y.L., Duan, L., Zhang, R.: Spatial throughput maximization of wireless powered communication networks. IEEE J. Sel. Areas Commun. 33(8), 1534–1548 (2014)

    Google Scholar 

  22. Luo, S., Rui, Z., Teng, J.L.: Optimal save-then-transmit protocol for energy harvesting wireless transmitters. IEEE Trans. Wirel. Commun. 12(3), 1196–1207 (2013)

    Article  Google Scholar 

  23. Mehanna, O., Sultan, A.: Inter-sensing time optimization in cognitive radio networks. Comput. Sci. 72, 5533 (2010)

    Google Scholar 

  24. Yin, S., Zhang, E., Yin, L., Li, S.: Saving-sensing-throughput tradeoff in cognitive radio systems with wireless energy harvesting. In: 2013 IEEE Global Communications Conference (GLOBECOM), pp. 1032–1037, December 2013

    Google Scholar 

  25. Park, S., Kim, H., Hong, D.: Cognitive radio networks with energy harvesting. IEEE Trans. Wirel. Commun. 12(3), 1386–1397 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61471028, 61571010, and 61572070), and the Fundamental Research Funds for the Central Universities (Grant No. 2017JBM004 and 2016JBZ003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Huo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, H., Jing, T., Zhang, F., Fan, X., Lu, Y., Huo, Y. (2018). Throughput Analysis for Energy Harvesting Cognitive Radio Networks with Unslotted Users. In: Chellappan, S., Cheng, W., Li, W. (eds) Wireless Algorithms, Systems, and Applications. WASA 2018. Lecture Notes in Computer Science(), vol 10874. Springer, Cham. https://doi.org/10.1007/978-3-319-94268-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94268-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94267-4

  • Online ISBN: 978-3-319-94268-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics