Skip to main content

A Crowdsourcing-Based Wi-Fi Fingerprinting Mechanism Using Un-supervised Learning

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10874))

Abstract

In recent years, the Wi-Fi fingerprint-based indoor localization methods are widely applied to more and more ubiquitous applications. One of the key concerns is how to efficiently collect Wi-Fi fingerprint to reflect the harsh indoor environmental dynamics. However, continuous Wi-Fi fingerprinting confronts a contradiction: consumption in fingerprint collection and the real-time accuracy of fingerprint. We find that location fingerprint variations are related to crowd spatial distribution, and the distributions often varies periodically. Based on these observations, this paper proposes a crowdsourcing-based Wi-Fi fingerprinting mechanism using un-supervised learning, which exploit the historical data similar to the current fingerprint with particle filter method to enrich the data updating location fingerprint and generated updated location fingerprint with Gaussian process regression. Experimental results show that in our experimental environment, compared with the location fingerprints which are updated with only current data, the mean square error of the updated location fingerprints is reduced significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Priyantha, N., Chakraborty, A., Balakrishnan, H.: The Cricket location-support system. In: Proceedings of ACM MobiCom 2000, pp. 32–43 (2000)

    Google Scholar 

  2. Savvides, A., Han, C., Strivastava, M.B.: Dynamic fine-grained localization in Ad-Hoc networks of sensors. In: Proceedings of ACM MobiCom 2001, pp. 166–179 (2001)

    Google Scholar 

  3. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking system. In: Proceedings of IEEE INFOCOM 2000, pp. 775–784 (2000)

    Google Scholar 

  4. Youssef, M., Agrawala, A.: The Horus WLAN location determination system. Wirel. Netw. 14(3), 357–374 (2008)

    Article  Google Scholar 

  5. Mirowski, P., Milioris, D., Whiting, P., Ho, T.K.: Probabilistic radio-frequency fingerprinting and localization on the run. Bell Labs Tech. J. 18(4), 111–133 (2014)

    Article  Google Scholar 

  6. Kerckhofs, G., Schrooten, J., Van Cleynenbreugel, T., Lomov, S.V., Wevers, M.: Empirical evaluation of signal-strength fingerprint positioning in wireless LANs. In: Proceedings of MSWIM 2010, pp. 5–13 (2010)

    Google Scholar 

  7. Ji, Y., Pandey, S., Agrawal, P.: ARIADNE: a dynamic indoor signal map construction and localization system. In: Proceedings of ACM MobiSys 2006, pp. 151–164 (2006)

    Google Scholar 

  8. Wu, C., Yang, Z., Liu, Y., Xi, W.: WILL: wireless indoor localization without site survey. In: Proceedings of IEEE INFOCOM 2012, pp. 64–72 (2012)

    Google Scholar 

  9. Huang, J., Millman, D., Quigley, M., Stavens, D., Thrun, S., Aggarwal, A.: Efficient, generalized indoor WiFi GraphSLAM. In: Proceedings of IEEE ICRA 2011, pp. 1038–1043 (2011)

    Google Scholar 

  10. Mirowski, P., Palaniappan, R., Ho, T.K.: Depth camera SLAM on a low-cost WiFi mapping robot. In: Proceedings of IEEE TePRA 2012, pp. 1–6 (2012)

    Google Scholar 

  11. Zheng, V.W., Xiang, E.W., Yang, Q., Shen, D.: Transferring localization models over time. In: Proceedings of AAAI 2008, pp. 1421–1426 (2008)

    Google Scholar 

  12. Wang, H.Y., Zheng, V.W., Zhao, J., Yang, Q.: Indoor localization in multi-floor environments with reduced effort. In: Proceedings of PerCom 2010, pp. 244–252 (2010)

    Google Scholar 

  13. Yang, S., Dessai, P., Verma, M., Gerla, M.: FreeLoc: calibration-free crowdsourced indoor localization. In: Proceedings of IEEE INFOCOM 2013, pp. 2481–2489 (2013)

    Google Scholar 

  14. Park, J.G., Charrow, B., Curtis, D., Battat, J., Minkov, E., Hicks, J., et al.: Growing an organic indoor location system. In: Proceedings of ACM MobiSys 2010, pp. 271–284 (2010)

    Google Scholar 

  15. He, S., Lin, W., Chan, S.H.G.: Indoor localization and automatic fingerprint update with altered AP signals. IEEE Trans. Mob. Comput. 16(7), 1897–1910 (2017)

    Article  Google Scholar 

  16. Zhuang, Y., Syed, Z., Georgy, J., El-Sheimy, N.: Autonomous smartphone-based WiFi positioning system by using access points localization and crowdsourcing. Pervasive Mob. Comput. 18(C), 118–136 (2015)

    Article  Google Scholar 

  17. Pan, S.J., Kwok, J.T., Yang, Q., Pan, J.J.: Adaptive localization in a dynamic WiFi environment through multi-view learning. In: Proceedings of AAAI 2007, pp. 1108–1113 (2007)

    Google Scholar 

  18. Wu, C., Yang, Z., Xiao, C.: Automatic radio map adaptation for indoor localization using smartphones. IEEE Trans. Mob. Comput. 17(3), 517–528 (2018)

    Article  Google Scholar 

  19. Mchutchon, A., Rasmussen, C.E.: Gaussian process training with input noise. In: Proceedings of NIPS 2011, pp. 1341–1349 (2011)

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the National Key Research Development Program of China (2016YFB0502201), the National Natural Science Foundation of China NSFC (U1636101, 61572370) and CERNET Next Generation Internet’s Technology Innovation Project (NGII20160324, NGII20170633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niu, X., Zhang, C., Wang, A., Liu, J., Wang, Z. (2018). A Crowdsourcing-Based Wi-Fi Fingerprinting Mechanism Using Un-supervised Learning. In: Chellappan, S., Cheng, W., Li, W. (eds) Wireless Algorithms, Systems, and Applications. WASA 2018. Lecture Notes in Computer Science(), vol 10874. Springer, Cham. https://doi.org/10.1007/978-3-319-94268-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94268-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94267-4

  • Online ISBN: 978-3-319-94268-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics