Skip to main content

A Cooperative Jamming Based Secure Uplink Transmission Scheme for Heterogeneous Networks Supporting D2D Communications

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10874))

  • 4233 Accesses

Abstract

A heterogeneous network supporting D2D communications is a typical framework to cope with data sharing in a cyber physical system. In the network, there exists more interference than traditional cellular networks, which promotes interference cancellation (IC) technologies. Yet, how IC can improve security performance of D2D-enabled networks is still unknown. In addition, how to establish a secure physical transmission link for users in these networks is of great significance. In this paper, with IC or not, we first derive the expressions of the secrecy outage probability in D2D-enabled heterogeneous networks, respectively. Then, according to the transmission constraint and the security constraint, we present two cooperative jamming schemes based on devices in D2D networks for achieving secure uplink of cellular users. In these schemes, we formulate the above secure challenge as an optimization problem with or without fully IC and provide the corresponding optimal solutions to improve the secrecy performance of cellular uplink. Finally, numerical simulation demonstrates that the secure performance of cellular uplink is remarkably enhanced using our cooperative jamming schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zheng, X., Cai, Z., Li, J., Gao, H.: A study on application-aware scheduling in wireless networks. IEEE Trans. Mob. Comput. 16(7), 1787–1801 (2017)

    Article  Google Scholar 

  2. Cheng, S., Cai, Z., Li, J., Fang, X.: Drawing dominant dataset from big sensory data in wireless sensor networks. In: 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 531–539, April 2015

    Google Scholar 

  3. Cai, Z., Chen, Z.-Z., Lin, G.: A 3.4713-approximation algorithm for the capacitated multicast tree routing problem. Theor. Comput. Sci. 410(52), 5415–5424 (2009)

    Article  MathSciNet  Google Scholar 

  4. Li, J., Cheng, S., Cai, Z., Yu, J., Wang, C., Li, Y.: Approximate holistic aggregation in wireless sensor networks. ACM Trans. Sen. Netw. 13(2), 11:1–11:24 (2017)

    Article  Google Scholar 

  5. Cheng, S., Cai, Z., Li, J., Gao, H.: Extracting kernel dataset from big sensory data in wireless sensor networks. IEEE Trans. Knowl. Data Eng. 29(4), 813–827 (2017)

    Article  Google Scholar 

  6. Huo, Y., Hu, C., Qi, X., Jing, T.: LoDPD: a location difference-based proximity detection protocol for fog computing. IEEE Internet Things J. 4(5), 1117–1124 (2017)

    Article  Google Scholar 

  7. Asadi, A., Wang, Q., Mancuso, V.: A survey on device-to-device communication in cellular networks. IEEE Commun. Surv. Tutor. 16(4), 1801–1819 (2014)

    Article  Google Scholar 

  8. Huo, Y., Tian, Y., Ma, L., Cheng, X., Jing, T.: Jamming strategies for physical layer security. IEEE Wirel. Commun. 25(1), 148–153 (2018)

    Article  Google Scholar 

  9. He, Z., Cai, Z., Cheng, S., Wang, X.: Approximate aggregation for tracking quantiles and range countings in wireless sensor networks. Theor. Comput. Sci. 607(P3), 381–390 (2015)

    Article  MathSciNet  Google Scholar 

  10. Cai, Z., Lin, G., Xue, G.: Improved approximation algorithms for the capacitated multicast routing problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 136–145. Springer, Heidelberg (2005). https://doi.org/10.1007/11533719_16

    Chapter  Google Scholar 

  11. Cheng, S., Cai, Z., Li, J.: Curve query processing in wireless sensor networks. IEEE Trans. Veh. Technol. 64(11), 5198–5209 (2015)

    Article  Google Scholar 

  12. Lee, N., Lin, X., Andrews, J.G., Heath, R.W.: Power control for D2D underlaid cellular networks: modeling, algorithms, and analysis. IEEE J. Sel. Areas Commun. 33(1), 1–13 (2015)

    Article  Google Scholar 

  13. Huang, Y., Nasir, A.A., Durrani, S., Zhou, X.: Mode selection, resource allocation, and power control for D2D-enabled two-tier cellular network. IEEE Trans. Commun. 64(8), 3534–3547 (2016)

    Article  Google Scholar 

  14. Memmi, A., Rezki, Z., Alouini, M.S.: Power control for D2D underlay cellular networks with channel uncertainty. IEEE Trans. Wirel. Commun. 16(2), 1330–1343 (2017)

    Article  Google Scholar 

  15. Lin, X., Andrews, J.G., Ghosh, A.: Spectrum sharing for device-to-device communication in cellular networks. IEEE Trans. Wirel. Commun. 13(12), 6727–6740 (2014)

    Article  Google Scholar 

  16. Ma, C., Li, Y., Yu, H., Gan, X., Wang, X., Ren, Y., Xu, J.J.: Cooperative spectrum sharing in D2D-enabled cellular networks. IEEE Trans. Commun. 64(10), 4394–4408 (2016)

    Google Scholar 

  17. Tanbourgi, R., Jakel, H., Jondral, F.K.: Cooperative interference cancellation using device-to-device communications. IEEE Commun. Mag. 52(6), 118–124 (2014)

    Article  Google Scholar 

  18. Ni, Y., Jin, S., Xu, W., Wang, Y., Matthaiou, M., Zhu, H.: Beamforming and interference cancellation for D2D communication underlaying cellular networks. IEEE Trans. Commun. 64(2), 832–846 (2016)

    Article  Google Scholar 

  19. Lv, S., Xing, C., Zhang, Z., Long, K.: Guard zone based interference management for D2D-aided underlaying cellular networks. IEEE Trans. Veh. Technol. 66(6), 5466–5471 (2017)

    Article  Google Scholar 

  20. Haus, M., Waqas, M., Ding, A.Y., Li, Y., Tarkoma, S., Ott, J.: Security and privacy in device-to-device (D2D) communication: a review. IEEE Commun. Surv. Tutor. 19(2), 1054–1079 (2017)

    Article  Google Scholar 

  21. Barki, A., Bouabdallah, A., Gharout, S., Traor, J.: M2M security: challenges and solutions. IEEE Commun. Surv. Tutor. 18(2), 1241–1254 (2016)

    Article  Google Scholar 

  22. Huang, L., Fan, X., Huo, Y., Hu, C., Tian, Y., Qian, J.: A novel cooperative jamming scheme for wireless social networks without known CSI. IEEE Access 5, 26476–26486 (2017)

    Article  Google Scholar 

  23. Zhang, R., Cheng, X., Yang, L.: Joint power and access control for physical layer security in D2D communications underlaying cellular networks. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6, May 2016

    Google Scholar 

  24. Wang, L., Wu, H., Liu, L., Song, M., Cheng, Y.: Secrecy-oriented partner selection based on social trust in device-to-device communications. In: 2015 IEEE International Conference on Communications (ICC), pp. 7275–7279, June 2015

    Google Scholar 

  25. Zhang, R., Cheng, X., Yang, L.: Cooperation via spectrum sharing for physical layer security in device-to-device communications underlaying cellular networks. IEEE Trans. Wirel. Commun. 15(8), 5651–5663 (2016)

    Article  Google Scholar 

  26. Alavi, F., Yamchi, N.M., Javan, M.R., Cumanan, K.: Limited feedback scheme for device-to-device communications in 5G cellular networks with reliability and cellular secrecy outage constraints. IEEE Trans. Veh. Technol. 66(9), 8072–8085 (2017)

    Article  Google Scholar 

  27. Ma, C., Wu, W., Cui, Y., Wang, X.: On the performance of interference cancelation in D2D-enabled cellular networks. Wirel. Commun. Mob. Comput. 16(16), 2619–2635 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61471028, 61572070, and 61702062), and the Fundamental Research Funds for the Central Universities (Grant No. 2017JBM004 and 2016JBZ003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Huo .

Editor information

Editors and Affiliations

Appendices

Appendix A: Proof of Lemma 1

To proof Lemma 1, we first discuss \(F_{\gamma _c}(T)\triangleq 1-\mathrm {Pr}^{\mathrm {(N)}}(\gamma _c>T)\) based on the CDF definition. Here, \(\mathrm {Pr}^{\mathrm {(N)}}(\gamma _c>T)\) represents the coverage probability of the cellular link without IC capability, which is

$$\begin{aligned} \begin{aligned} \mathrm {Pr}^{\mathrm {(N)}}(\gamma _c> T)&=P\left( \left| h_{cM} \right| ^2>\frac{r_{cM}^{\alpha }T}{p_c}\sum _{k\in \varPhi _{c,d}}p_d\left| h_{kM}\right| ^2r_{kM}^{-\alpha }\right) \\&= \int _{0}^{R}\frac{2r_{cM}}{R^2}\mathcal {L}^{\mathrm {(N)}}\left( \frac{r_{cM}^{\alpha }T}{p_c}\right) \mathrm {d}r_{cM}, \end{aligned} \end{aligned}$$
(12)

where \(\mathcal {L}^{\mathrm {(N)}}(s)=E_{\varPhi _{c,d}}\left[ e^{-s\sum _{k\in \varPhi _{c,d}}p_d\left| h_{kM}\right| ^2r_{kM}^{-\alpha }} \right] \) denotes the Laplace transform of s for the scenario without IC capability. Specifically,

$$\begin{aligned} \begin{aligned} \mathcal {L}^{\mathrm {(N)}}(s)\overset{\mathrm {(a)}}{=}&\exp \left\{ -\lambda _{c,d}\int _{R^2}\left( 1-E_h\left[ e^{-sp_d\left| h_{kM}\right| ^2r_{kM}^{-\alpha }}\right] \right) \mathrm {d}r_{kM}\right\} \\ \overset{\mathrm {(b)}}{=}&\exp \left\{ -2\pi \lambda _{c,d}\int _{0}^{\infty }\frac{sp_dr_{kM}}{sp_d+r_{kM}^{\alpha }}\mathrm {d}r_{kM}\right\} \\ =&\exp \left\{ -\pi \lambda _{c,d}(sp_d)^{\frac{2}{\alpha }}\varGamma (1+\frac{2}{\alpha })\varGamma (1-\frac{2}{\alpha })\right\} , \end{aligned} \end{aligned}$$
(13)

where \(\mathrm {(a)}\) follows the PDF of PPP, and \(\mathrm {(b)}\) holds because of the definition of a surface integral. Accordingly, (12) can be rewritten as follows.

$$\begin{aligned} \mathrm {Pr}^{\mathrm {(N)}}(\gamma _c > T) =\frac{1-e^{-\pi \lambda _{c,d}(\frac{Tp_d}{p_c})^{\frac{2}{\alpha }}\varGamma (1+\frac{2}{\alpha })\varGamma (1-\frac{2}{\alpha })R^2}}{\pi \lambda _{c,d}(\frac{Tp_d}{p_c})^{\frac{2}{\alpha }}\varGamma (1+\frac{2}{\alpha })\varGamma (1-\frac{2}{\alpha })R^2}. \end{aligned}$$
(14)

Next, we can derive the PDF of the most detrimental Eve, \(g(\cdot )\), based on the partial differential of the corresponding CDF, \(G(\cdot )\). Assuming M as the best SINR of eavesdroppers, \(G(M)\triangleq \mathrm {Pr}(\max \gamma _{e}<M)\) can be calculated as follows.

$$\begin{aligned} \begin{aligned} G(M)&= E\left[ \prod _{\varPhi _e}\left( 1-e^{-\frac{r_{ce}^{\alpha }M}{p_c}\sum \limits _{k\in \varPhi _{c,d}}p_d\left| h_{ke}\right| ^2r_{ke}^{-\alpha }}\right) \right] \\&\overset{\mathrm {(a)}}{=}\exp \left\{ -2\pi \lambda _e\int _{0}^{\infty }r_{ce} \mathcal {L}^{\mathrm {(N)}}\left( \frac{r_{ce}^{\alpha }M}{p_c}\right) \mathrm {d}r_{ce}\right\} \\&\overset{\mathrm {(c)}}{=} \exp \left\{ -\frac{\lambda _e}{\lambda _{c,d}(\frac{Mp_d}{p_c})^{\frac{2}{\alpha }}\varGamma (1+\frac{2}{\alpha })\varGamma (1-\frac{2}{\alpha })}\right\} , \end{aligned} \end{aligned}$$
(15)

where \(\mathrm {(c)}\) holds by substituting \(\mathcal {L}^{\mathrm {(N)}}(\cdot )\).

As a result, the secrecy outage probability of CU\(_c\) can be expressed as

$$\begin{aligned} \begin{aligned} P_{\mathrm {SOP}}^{(\mathrm {N})}&=1-\int _{0}^{\infty }\mathrm {Pr}^{\mathrm {(N)}}(\gamma _{c}>\mathrm {Th}(\max \gamma _{e}))\mathrm {d}G(M)\\&=1-\frac{2B}{\alpha A \lambda _{c,d}^2}\int _{0}^{\infty }\frac{1-e^{-A\lambda _{c,d}\mathrm {Th}(x)^{\frac{2}{\alpha }}}}{\mathrm {Th}(x)^{\frac{2}{\alpha }}}\cdot e^{-\frac{B}{\lambda _{c,d}}x^{-\frac{2}{\alpha }}}x^{-1-\frac{2}{\alpha }}\mathrm {d} x, \end{aligned} \end{aligned}$$
(16)

where \(A=\pi (\frac{p_d}{p_c})^{\frac{2}{\alpha }}\varGamma (1+\frac{2}{\alpha })\varGamma (1-\frac{2}{\alpha })R^2\) and \(B=\frac{\pi \lambda _e R^2}{A}\). And this completes the proof of Lemma 1.

Appendix B: Proof of Lemma 2

Similar to the proof of Lemma 1, we first provide the coverage probability of cellular links with IC capability follows [27].

$$\begin{aligned} \begin{aligned} \mathrm {Pr}^{\mathrm {(I)}}(\gamma _c> T)&=P(\left| h_{cM} \right| ^2>\frac{r_{cM}^{\alpha }T}{p_c}\sum _{k\in \varPhi _{c,d}}p_d\left| h_{kM}\right| ^2r_{kM}^{-\alpha }\varDelta _k)\\&=\int _{0}^{R}\frac{2r_{cM}}{R^2}\mathcal {L}^{\mathrm {(I)}}(\frac{r_{cM}^{\alpha }T}{p_c}) \mathrm {d}r_{cM}, \end{aligned} \end{aligned}$$
(17)

where \(\mathcal {L}^{\mathrm {(I)}}(s)=e^{-\lambda _{c,d}2\pi (\phi _1(s)+\phi _2(s)-\phi _3)}\) denotes the Laplace transform for the IC-enabled scenario. Here, \(\phi _1(s)=\frac{1}{2}(sp_d)^{\frac{2}{\alpha }}\varGamma (1+\frac{2}{\alpha })\varGamma (1-\frac{2}{\alpha }), \phi _2(s)=\frac{1}{\alpha }(sp_d)^{\frac{2}{\alpha }}\varGamma (1+\frac{2}{\alpha })\varGamma (-\frac{2}{\alpha },s\tau )\), and \(\phi _3=\frac{1}{\alpha }(\tau ^{-1}p_d)^{\frac{2}{\alpha }}\varGamma (\frac{2}{\alpha })\).

As a result, the secrecy outage probability of CU\(_c\) can be derived as follows,

$$\begin{aligned} \begin{aligned} P_{\mathrm {SOP}}^{(\mathrm {I})}&=1-\int _{0}^{\infty }\mathrm {Pr}^{\mathrm {(I)}}(\gamma _{c}>\mathrm {Th}(\max \gamma _{e}))\mathrm {d}G(M)\\&=1-\frac{2B}{\alpha \lambda _{c,d}}\int _{0}^{\infty }P e^{-\frac{B}{\lambda _{c,d}}x^{-\frac{2}{\alpha }}}x^{-1-\frac{2}{\alpha }}\mathrm {d} x, \end{aligned} \end{aligned}$$
(18)

where \(P=\mathrm {Pr}^{\mathrm {(I)}}(\gamma _c > \mathrm {Th}(x))\). And this completes the proof of Lemma 2.

Appendix C: Proof of Lemma 3

Assuming \(T=2^{R_t}-1\) and \(M=2^{R_t-R_s}-1\) in (14) and (15), then the transmission constraint and the security constraint can be rewritten as \(P_{\mathrm {TC}}=\frac{1-e^{-\hat{A}\lambda _{c,d}}}{\hat{A}\lambda _{c,d}}\) and \(P_{\mathrm {SC}}=e^{-\frac{\hat{B}}{\lambda _{c,d}}}\). Then, an extremum of \(P_{\mathrm {STP}}\) can be computed by its first derivative of \(\lambda _{c,d}\), i.e.,

$$\begin{aligned} \lambda _{c,d}^*\triangleq \arg \left\{ \frac{\mathrm {d} P_{\mathrm {STP}}^{(\mathrm {N})}}{\mathrm {d} \lambda _{c,d}}=0\right\} =\arg \left\{ f(\lambda _{c,d})=0\right\} , \end{aligned}$$
(19)

where \(f(\lambda _{c,d})=e^{\hat{A}\lambda _{c,d}}-\frac{\hat{A}\lambda _{c,d}^2}{\lambda _{c,d}-\hat{B}}-1\). Then, We analyze the existence of the extremum and explain that the extremum is the maximum value.

Existence: Considering the properties of continuous function, we analyse two cases of \(f(\lambda _{c,d})\). Because \(\frac{\mathrm {d} f(\lambda _{c,d})}{\mathrm {d} \lambda _{c,d}}=\hat{A}\left[ e^{\hat{A}\lambda _{c,d}}-1+(\frac{\hat{B}}{\lambda _{c,d}-\hat{B}})^2 \right] >0\) holds and \(f(\lambda _{c,d})\) is continuous, \(f(\lambda _{c,d})\) is larger than zero with \(\lambda _{c,d}\in (0,\hat{B})\). Similarly, there must exists only one solution \(\lambda _{c,d}^*\) to ensure \(f(\lambda _{c,d}) =0\) with \(\lambda _{c,d}\in (\hat{B},+\infty )\).

The Maximum Value: It’s easy to know that \(\frac{\mathrm {d} P_{\mathrm {STP}}^{(\mathrm {N})}}{\mathrm {d} \lambda _{c,d}}>0\) with \(\lambda _{c,d}\in (0,\hat{B})\cap (\hat{B},\lambda _{c,d}^* )\). For the full range of \(\lambda _{c,d}\), we still need to consider \(\frac{\mathrm {d} P_{\mathrm {STP}}^{(\mathrm {N})}(\hat{B})}{\mathrm {d} \lambda _{c,d}}=\frac{\hat{A}}{\hat{B}}e^{-1-\hat{A}\hat{B}}>0\). Similarly, \(\frac{\mathrm {d} P_{\mathrm {STP}}^{(\mathrm {N})}}{\mathrm {d} \lambda _{c,d}}<0\) with \(\lambda _{c,d}\in (\lambda _{c,d}^*,+\infty )\).

According to the above analysis of the extremum of \(P_{\mathrm {STP}}\), we know that \(P_{\mathrm {STP}}^{(\mathrm {N})}\) is a unimodal function of \(\lambda _{c,d}\). And this completes the proof of Lemma 3.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, J., Huo, Y., Fan, X., Hu, C., Jing, G. (2018). A Cooperative Jamming Based Secure Uplink Transmission Scheme for Heterogeneous Networks Supporting D2D Communications. In: Chellappan, S., Cheng, W., Li, W. (eds) Wireless Algorithms, Systems, and Applications. WASA 2018. Lecture Notes in Computer Science(), vol 10874. Springer, Cham. https://doi.org/10.1007/978-3-319-94268-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94268-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94267-4

  • Online ISBN: 978-3-319-94268-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics