
ar
X

iv
:1

80
3.

10
98

3v
2

 [
cs

.D
S]

 3
0

M
ay

 2
01

8

A Fixed-Parameter Algorithm for the Max-Cut

Problem on Embedded 1-Planar Graphs

Christine Dahn, Nils M. Kriege, and Petra Mutzel

Department of Computer Science, TU Dortmund University, Germany
{christine.dahn|nils.kriege|petra.mutzel}@cs.tu-dortmund.de

Abstract. We propose a fixed-parameter tractable algorithm for the
Max-Cut problem on embedded 1-planar graphs parameterized by the
crossing number k of the given embedding. A graph is called 1-planar if it
can be drawn in the plane with at most one crossing per edge. Our algo-
rithm recursively reduces a 1-planar graph to at most 3k planar graphs,
using edge removal and node contraction. The Max-Cut problem is
then solved on the planar graphs using established polynomial-time al-
gorithms. We show that a maximum cut in the given 1-planar graph can
be derived from the solutions for the planar graphs. Our algorithm com-
putes a maximum cut in an embedded 1-planar graph with n nodes and
k edge crossings in time O(3k · n3/2 log n).

Keywords: maximum cut, fixed-parameter tractable, 1-planar graphs

1 Introduction

Partitioning problems on graphs receive increasing attention in the literature.
Here the task is to partition the set of nodes of a given (weighted) undirected
graph so that the number (or weighted sum) of connections between the parts is
minimized. A special case is the Max-Cut problem which asks for a node par-
tition into two sets so that the sum of the edge weights in the cut is maximised.
The problem is getting increasing attention in the literature, since it is directly
related to solving Ising spin glass models (see, e.g., Barahona [3]) which are of
high interest in physics. Besides its theoretical merits, Ising spin glass models
need to be solved in adiabatic quantum computation [20]. Other applications
occur in the layout of electronic circuits [6,8].

TheMax-Cut problem has been shown to be NP-hard for general graphs [15].
Moreover, Papadimitriou and Yannakakis [24] have shown that the Max-Cut

problem is APX-hard, i.e., there does not exist a polynomial-time approxima-
tion scheme unless P=NP. Goemans and Williamson suggested a randomized
constant factor approximation algorithm [10] which has been derandomized by
Mahajan and Ramesh [19] and has a performance guarantee of 0.87856. There
are a number of special cases for which the problem can be solved in polynomial
time. The most prominent case arises if the weights of all edges are negative,
since then the problem can be solved via network flow. Other special cases are
graphs without long odd cycles [11] or weakly bipartite graphs [12]. Another

http://arxiv.org/abs/1803.10983v2

2

prominent case arises for planar input graphs. Orlova and Dorfman [22] and
Hadlock [13] have shown that the Max-Cut problem can be solved in polyno-
mial time for unweighted planar graphs. Their algorithms can be extended to
work on weighted planar graphs (e.g., Mutzel [21]). Currently, the fastest algo-
rithms have been suggested by Shih et.al. [25] and by Liers and Pardella [18].
These results have been extended to the class of graphs not contractible to K5 [5]
and to toroidal graphs [4,9] (i.e., graphs that can be embedded on the torus). In
this paper, we show an extension of the planar special case to that of the class
of 1-planar graphs.

A graph is 1-planar if it can be drawn into the plane so that every edge
is crossed at most once. While planarity testing can be done in linear time
[14], the recognition problem for 1-planar graphs is much harder. Korzhik and
Mohar showed that 1-planarity testing is NP-hard [16]. However, there are fixed-
parameter tractable (FPT) algorithms parameterized by the cyclomatic number
(the minimum number of edges that must be removed from the graph to create
a forest), the tree-depth or the node cover number [2]. For 1-planar graphs these
algorithms construct a 1-planar embedding.

Our contribution. Given an embedded 1-planar graph with k crossings, we sug-
gest a fixed-parameter tractable algorithm for the Max-Cut problem with pa-
rameter k. The idea of our algorithm is to recursively reduce the input graph
into a set of at most 3k planar graphs using a series of edge removals and node
contractions. The planar instances can then be solved using the polynomial time
algorithms suggested in [25,18] with running time O(n3/2 log n) for a planar
graph with n nodes.

The paper is organized as follows. Section 2 contains the basic definitions
concerning cuts and 1-planarity. We also introduce the class of k-almost-planar
graphs which have 1-planar drawings not exceeding k crossings. In Section 3 we
present our new algorithm for embedded 1-planar graphs and prove its correct-
ness. Our analysis of its running time shows that it is fixed-parameter tractable
with parameter k. We end with a conclusion and open problems in Section 4.

2 Preliminaries

Throughout our paper, we consider undirected weighted graphs G = (V,E, c)
with arbitrary edge weights. A partition of the nodes of G into two sets S ⊆ V
and S = V \S defines the cut δ(S,G) = {(uv) ∈ E | (u ∈ S and v ∈ S) or (v ∈
S and u ∈ S)}. The value of a cut δ(S,G) in the graph G is the sum of weights of
all edges in the cut: c(δ(S,G)) =

∑

e∈δ(S,G) ce. The Max-Cut problem searches
for a cut in a given weighted graph with highest value. For the graph class of
planar graphs, the Max-Cut problem can be solved in polynomial time.

A graph is planar if it admits a planar drawing, i.e., a drawing on the plane
without any edge crossing. A drawing admits a rotation system which is a
clockwise-ordering of the incident edges for every node. In a planar drawing,
a rotation system defines the faces, i.e., the topologically connected regions of

3

the plane. One of the faces, the outer face, is unbounded. A face is uniquely de-
scribed by its boundary edges. Such a description for each face is an equivalent
definition of a (planar) embedding. A (planar) embedding represents the set of
all planar drawings with the same faces. It can be represented by the description
of the faces or by the rotation system. It is well known that planarity testing can
be solved in linear time [14]. The same is true for computing a planar embedding.
In order to generate crossing free drawings of planar graphs, a number of var-
ious algorithms exist, e.g., the straight-line drawing algorithm by de Fraysseix
et.al. [7].

Planar graphs are contained in the class of 1-planar graphs. A graph is 1-
planar, if it admits a 1-planar drawing, i.e., a drawing on the plane with at most
one crossing per edge. Testing 1-planarity is NP-hard [16] even in the case of
bounded treewidth or bandwith [2]. A 1-planar embedding defines the faces of a
given 1-planar drawing and can be represented by the set of crossings X and a
list of edges and edge segments (half edges) for the crossings for each face. Note
that a 1-planar embedding uniquely defines a rotation system for the nodes.
However, the opposite is not true. In general, a rotation system does not allow
for computing the crossings efficiently or a 1-planar embedding. Auer et al. [1]
have shown that testing 1-planarity of a graph with a fixed rotation system is
NP-hard even if the graph is 3-connected.

We call a 1-planar graph k-almost-planar if it admits a 1-planar drawing
with at most k edge crossings. For edge removal and node contraction we use
the following notation: G − e = (V,E \ {e}) denotes the graph obtained from
G = (V,E) by deleting the edge e ∈ E. G/xy contracts the two nodes x and y
into a new node vxy /∈ V . In doing so, the edges leading to x or y are replaced
by a new edge to vxy. Multi-edges to vxy are contracted to one edge and their
edge weights are added, self-loops are deleted. We denote the inverse operation
of contraction by Split. The contraction and Split operation can be applied
to a subset of nodes S ⊆ V :

S/xy =

{

S \ {x, y} ∪ {vxy} if x, y ∈ S

S otherwise

Split(S, vxy) =

{

S \ {vxy} ∪ {x, y} if vxy ∈ S

S otherwise

3 Max-Cut for embedded 1-planar graphs

Our main idea for computing the maximum cut in an embedded 1-planar graph
G is to eliminate its k crossings and then use a Max-Cut algorithm for planar
graphs on the resulting planar graph. In order to remove a crossing, we need to
know the two crossing edges of each crossing. We use two methods to remove
a crossing: Either by deleting one of the crossing edges, or by contracting two
nodes that do not belong to the same crossing edge.

4

3.1 Removing the crossings

In this section let G = (V,E, c) be a k-almost-planar graph with a 1-planar
embedding (Π,X) and a set of crossing edges X with |X | = k. A crossing is
defined by a pair of crossing edges, e.g., let χ = {evy, ewz} ∈ X be an arbitrary
crossing. The following lemma shows that specific node contractions (and edge
deletions) remove at least one crossing and do not introduce new crossings.
Figures 1b and 1c show examples of node contraction and Figure 1d shows an
example of edge deletion.

Lemma 1. Let G be a k-almost-planar graph with 1-planar embedding (Π,X)
and χ = {evy, ewz} ∈ X be an arbitrary crossing. The graphs G/ab, G− evy and
G−ewz are (k−1)-almost-planar for ab ∈ {vw, vz, wy, yz}. The set of crossings
in the resulting 1-planar embedding is a proper subset of X.

Proof. Since the contracted nodes a and b are each an endpoint to one of the
crossing edges, the contracted node is an endpoint to both edges. Since evy and
ewz now have a common endpoint, they can be drawn without a crossing. There-
fore the crossing χ is removed. The contraction does not create new crossings
because the two nodes a and b can be moved along their half edges towards the
crossing. This is possible because we have a 1-planar embedding which has the
property that every crossing is incident to two half edges connecting it with its
endpoints. The new node vab is then placed where the crossing used to be. All
other edges can be extended to the new node along the way of the same half
edges without creating new crossings. Multi-edges are merged into a single edge
and self-loops are deleted. In G− evy and G− ewz, the crossing χ is removed by
deleting one of its crossing edges. Obviously this does not lead to new crossings.
So in both cases the number of crossings decreases. ⊓⊔

The recursive application of Lemma 1 shows that all crossings can be removed
with these two operations. Thus after k contraction or removal operations, the
resulting graph is planar and a planar Max-Cut algorithm can be applied to
compute a maximum cut. The following lemma shows how to project a cut in
G/xy or G− e back onto G.

Lemma 2. Let G = (V,E, c) be a weighted graph, x 6= y ∈ V and S ⊆ V .

(i) Let δ(S,G/xy) be a cut in G/xy, then the cut δ(Split(S, vxy), G) in G has
the same value.

(ii) If x and y are in the same set (x, y ∈ S or x, y ∈ S) then δ(S,G) =
δ(S,G− exy) for exy ∈ E.

Proof. (i) Let S define a cut in G/xy. If the contracted node vxy is split, the
cut is projected from G/xy to G. The corresponding set of nodes in G is S′ =
Split(S, vxy). It defines a cut inG. If vxy /∈ S then S = S′. The weight of an edge
e ∈ δ(S,G/xy) in G/xy is either the same as the weight of the corresponding
edge e′ ∈ δ(S′, G) in G or it is split between two edges e′, e′′ ∈ δ(S′, G) in G.
The only edge that might exist in G but not in G/xy is exy. Since x and y

5

a b

cd

e

f

t

s

y

x

(a) H

a

vbc

d

e

f

t

s

y

x

(b) H/bc

a b

vcd

e

f

t

s

y

x

(c) H/cd

a b

cd

e

f

t

s

y

x

(d) H − ebd

Fig. 1: An example how a crossing can be removed. (Blue dashed edges are merged
edges from H .)

were contracted in G/xy, they are either both in S′ or both in S′. Therefore the
only edge that could be added in G by splitting vxy can not add to the value of
δ(S′, G) in G. So no weights are lost or added due to the projection and the two
cuts have the same value.
(ii) This is obvious because exy is in neither of the two cuts. ⊓⊔

3.2 The Max-Cut Algorithm

We use the three operations introduced above to successively remove all crossings
of a 1-planar graph. All planar instances obtained in this way are then solved
by a Max-Cut algorithm for planar graphs. From the solutions of the planar
graphs, we construct a solution for the original graph. Note that the algorithm
only needs the graph G and the set of edge crossings X as input. However, the
1-planar embedding is needed to show the correctness of the algorithm.

Algorithm 1.1 realizes this approach with a recursive function, which is ini-
tially called with the input graph G and the set of crossings X present in its
embedding. As the algorithm progresses, the graph is successively modified and
the set of crossings is adjusted according to the modifications applied. If the
graph G passed as parameter to the function is planar (X = ∅), then a pla-
nar Max-Cut algorithm is called (line 2). If there are still crossings remaining,

6

MaxCut(G,X)

Input: An undirected weighted 1-planar graph G and a set of crossing edges X in a
1-planar embedding of G.
Output: A set S ⊆ VG defining a maximum cut δ(S,G) ⊆ EG in G.

1: if X = ∅ then
2: S ← MaxCutplanar(G)
3: else
4: choose an element χ← {evy , ewz} ∈ X
5: S1 ← MaxCut(G/wy, Update(X,w, y))
6: S2 ← MaxCut(G/yz, Update(X, y, z))
7: S3 ← MaxCut(G− ewz, X \ {χ})
8: G1 ← G/wy, G2 ← G/yz, G3 ← G− ewz

9: j ← argmax
1≤i≤3

c(δ(Si, Gi))

10: if j = 1 then
11: S ← Split(S1, vwy)
12: else if j = 2 then
13: S ← Split(S2, vyz)
14: else
15: S ← S3

16: end if
17: end if
18: return S

Algorithm 1.1: Max-Cut algorithm for embedded 1-planar graphs

an arbitrary crossing is selected and removed in three different ways: Let y be
an arbitrary endpoint of one crossing edge and ewz, w 6= y, z 6= y, the other
crossing edge, then (i) the nodes y and w are contracted, (ii) the nodes y and
z are contracted, and (iii) the edge ewz is deleted. Each operation removes at
least the selected crossing, but in case (i) and (ii) also other crossing may be
affected. Therefore, the set of crossings X is adjusted by the function Update.
If two nodes w, y are contracted, Update(X,w, y) removes every crossing in X
which was dissolved by contracting w and y, and replaces every appearance of
w or y in X with the contracted node vwy. To check if a crossing was dissolved,
Update checks if w and y are both part of the crossing. Since every crossing
needs to be checked once, Update has a linear running time. For each case, the
recursive function is called with the modified graph and the set of crossings as
a parameter (lines 5-7). Each call returns a node set defining a maximum cut in
the modified instance. The cut with maximal value is then projected back to G.
If the maximum cut is obtained in a graph with contracted nodes, i.e., case (i)
or (ii), then the original nodes are restored by the function Split(S, vwy), which
replaces vwy with w and y if S contains the contracted node. This cut-defining
set is then returned as the solution to the subproblem.

Example 1. Given the 2-almost planar graph H in Figure 1a with uniform edge
weights, e.g. 1. The algorithm removes the left crossing in the three described

7

a

vbc

d

e

f

t

s

y

x

(a) Max-Cut in H/bc

a b

vcd

e

f

t

s

y

x

(b) Max-Cut in H/cd

a b

cd

e

f

t

s

y

x

(c) Max-Cut in H − e12

a b

cd

e

f

t

s

y

x

(d) Max-Cut in H

Fig. 2: An example how the algorithm calculates aMax-Cut in an embedded 2-almost-
planar graph. (Blue dotted edges were merged and have weight 2; all other edges have
weight 1; curvy edges belong to the cut; black dashed edges do not belong to the cut.)

ways. The resulting graphs are shown in Figure 1b-1d. The recursively calculated
cuts of these graphs are depicted in Figure 2a-2c with 2b being the largest cut.
This cut is transferred back to H by splitting the contracted node vcd. The
resulting cut is shown in Figure 2d. It is a maximum cut in H .

3.3 Correctness

The four endpoints of a crossing can be partitioned in eight non-isomorphic
ways, cf. Figure 3: (a) all endpoints in one set, (b)/(c)/(d)/(e) three endpoints
in one set without v/w/y/z, (f)/(g) the two endpoints of different crossing edges
in the same sets, or (h) the two endpoints of the same crossing edges in one
set each. For arbitrary graphs, the induced cut is different because non-crossing
edges might be replaced with a path or might not exist at all.

Lemma 3. Let G = (V,E, c) be a 1-planar graph with a 1-planar embedding
(Π,X), S ⊆ V , and χ = {evy, ewz} ∈ X be an arbitrary crossing.

(i) If a cut δ(S,G) in G separates the four endpoints of χ as shown in Fig. 3
(a), (b), (c) or (f) then S2 = S/yz defines a cut in G/yz with the same
value. If δ(S,G) is maximal in G so is δ(S2, G/yz) in G/yz.

8

v w

yz

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 3: The 8 non-isomorphic partitions of the four endpoints of a crossing. (The red
and curvy edges belong to the cut that is defined by the corresponding partition on
the K4.)

(ii) If a cut δ(S,G) in G separates the four endpoints of χ as shown in Fig. 3
(a), (b), (e) or (g) then S1 = S/wy defines a cut in G/wy with the same
value. If δ(S,G) is maximal in G so is δ(S1, G/wy) in G/wy.

(iii) If a cut δ(S,G) in G separates the four endpoints of χ as shown in Fig. 3
(a), (b), (d) or (h) then S3 = S defines a cut in G − ewz with the same
value. If δ(S,G) is maximal in G, so is δ(S3, G− ewz) in G− ewz.

Proof. (i) Let S define a cut in G that separates the endpoints of χ as shown in
Fig. 3 (a), (b), (c) or (f). By contracting y and z, the set of nodes is projected
to G/yz and δ(S2, G/yz) is a cut in G/yz. The only edge that might have been
removed in G/yz does not add to the value of δ(S,G) in G because y and z
are not separated by the cut (Fig. 3 (a), (b), (c) or (f)). Therefore, the two
cuts have the same value in both graphs. Let S define a maximum cut in G
(with the required property). If there was a cut δ(S′, G/yz) in G/yz larger than
δ(S2, G/yz), then Split(S′, vyz) would define a cut in G with the same value as
δ(S′, G) (Lemma 2 i), contradicting that δ(S,G) is maximal in G.
(ii) The proof of the second proposition is analogous to the proof of the first.
(iii) Let S define a cut in G that separates the endpoints of χ as shown in
Fig. 3 (a), (b), (d) or (h). Since G and G − ewz have the same set of nodes,
δ(S3, G− ewz) is a cut in G − ewz as well. We know that w and z are not
separated by the cut (Fig. 3 (a), (b), (d) or (h)). Therefore the only edge that
was removed in G − ewz does not add to the value of the cut in G and the
cut has the same value in both graphs. Let S define a maximum cut in G
(with the required property). If there was a cut δ(S′, G− ewz) in G− ewz larger
than δ(S3, G− ewz), then δ(S′, G) would be a cut in G as well (Lemma 2 ii),
contradicting that δ(S,G) is maximal in G. ⊓⊔

Theorem 1. Algorithm 1.1 computes a maximum cut in a 1-planar graph G,
given a set of crossing edges X in a 1-planar embedding of G.

Proof. We prove its optimality by induction over k. For k = 0, the given graph
is planar. Thus the Max-Cut algorithm for planar graphs calculates a node set
defining a maximum cut in G. Let S∗ define a maximum cut in G. We show that
the cut δ(S,G) defined by the calculated node set S is not smaller than δ(S∗, G).
Let G1 = G/wy,G2 = G/yz and G3 = G − ewz be the (k − 1)-almost-planar
graphs (Lemma 1) whose cuts δ(S1, G1), δ(S2, G2) and δ(S3, G3) are calculated
recursively by the algorithm. There are 8 possible ways for S∗ to separate the

9

four endpoints of χ. These are shown in Fig. 3 (a)–(h). If the endpoints of χ are
separated as shown in (a), (b), (e) or (g), then δ(S∗, G) has the same value as a
maximum cut δ(S∗

1, G1) in G1 (Lemma 3 ii). Due to the induction hypothesis,
δ(S1, G1) is not smaller than δ(S∗

1, G1). If the endpoints of χ are separated as
shown in (c) or (f), then δ(S∗, G) has the same value as a maximum cut δ(S∗

2, G2)
in G2 (Lemma 3 i). Due to the induction hypothesis, δ(S2, G2) is not smaller
than δ(S∗

2, G2). If the endpoints of χ are separated as shown in (d) or (h), then
δ(S∗, G) has the same value as a maximum cut δ(S∗

3, G3) in G3 (Lemma 3 iii).
Due to the induction hypothesis, δ(S3, G3) is not smaller than δ(S∗

3, G3). The
algorithm chooses the node set defining the largest of these three cuts (line 9–
16) and projects it back to G without changing its value (Lemma 2). Thus the
calculated cut δ(S,G) is not smaller than δ(S1, G1), δ(S2, G2) and δ(S3, G3). ⊓⊔

3.4 Running time

Let n be the number of nodes and m be the number of edges of a given graph.
It is well known that a 1-planar graph has at most 4n − 8 edges [23]. For an
arbitrary 1-planar drawing, the number of crossings is bounded by m

2 , since every
edge can be crossed at most once and every crossing needs two edges. With the
previous observation, we can establish a bound depending on the number of
nodes: k ≤ 2n− 4.

Theorem 2. Algorithm 1.1 computes a maximum cut in an embedded 1-planar
graph with n nodes and k crossings in time O(3k · Tp(n)), where Tp(n) is the
running time of a planar Max-Cut algorithm. Using the algorithms suggested
in [17] or [25], the running time is O(3k · n3/2 logn).

Proof. Let T (k, n) be the running time of Algorithm 1.1 on an embedded 1-
planar graph G with n nodes and k crossings. If G is planar, our algorithm uses
a planar Max-Cut algorithm, resulting in T (0, n) = Tp(n). Update has a linear
running time of O(k), since every crossing in X needs to be checked only once.
The contractions of G/wy and G/yz take time O(n+m) and the edge removal
G − ewz takes time O(m). Reversing a contraction on a set of nodes Si with
Split takes |Si| steps, resulting in a running time of O(n). Hence the recursive
running time is:

T (k, n) = 3 · T (k − 1, n) +O(k + n+m)

An induction proof shows that T (k, n) = 3k · (T (0, n)+
∑k

i=1 3
−i ·O(i+n+m)).

Since m is bounded by 4n − 8 [23], k is bounded by 2n − 4 (see above), i is
bounded by k and the geometric sum equals a value between 0 and 1, the overall
running time is O(3k · (Tp(n) + n)). Liers and Pardella [17] or Shih et al. [25]
describe a planar Max-Cut algorithm with a running time of O(n3/2 · logn),
resulting in a concrete running time of O(3k · n3/2 logn) for our algorithm. ⊓⊔

If the number of crossings k in a 1-planar embedding is fixed, the running time
of Algorithm 1.1 is polynomial. However, in an arbitrary 1-planar embedding, k

10

is not fixed and the factor 3k leads to an exponential worst case running time.
But we can show that our algorithm is fixed-parameter tractable with parameter
k. Since its running time can be split into an exponential part, depending only
on the parameter k, (3k) and a polynomial part in the size of the input graph
(Tp(n) + n), the algorithm is fixed-parameter tractable with parameter k.

Theorem 3. The Max-Cut problem on embedded 1-planar graphs is fixed-
parameter tractable parameterized by the crossing number k of the given 1-planar
embedding.

4 Conclusion and open problems

We have presented a polynomial time algorithm for computing a Max-Cut in a
1-planar graph provided with a 1-planar embedding with a constant number of
crossings. This shows that the Max-Cut problem on embedded 1-planar graphs
is in the class FPT.

The question arises if our approach can be extended to general graphs with
up to k crossings per edge, so called k-planar graphs. Our approach is based
on the fact that node contractions and edge deletions decrease the number of
crossings (see Lemma 1). Figure 4 shows that this is no longer true if an edge
is crossed more than once. In this case, there are crossings that do not have
direct half edges connecting it to its endpoints like, e.g., the crossing (ad, cf)
in Figure 4. If we contract d and f , we get plenty of new crossings in the new
graph G/df . We are currently working to generalize our approach to embedded
k-planar graphs.

a

. . .
l

f

b

e

c

. . .
l

d

l

(a) G

a

. . .
l

vdf

b

e

c

. . .
l

l

(b) G/df

Fig. 4: A 4-planar graph where the contraction of the nodes d and f leads to O(l) new
crossings. The two edges that generate the new crossings are drawn in red. Between a
and f (resp. c and d) in G are l independent paths. Beneath b there are l paths between
a and c that are pairwise connected and therefore have a specific order. The highest
path contains a node connected to b and the lowest path contains a node connected to
e. No matter where e is drawn in G/df , one of the two red edges crosses at least l − 1
other edges.

11

Another interesting question would be to drop the assumption that we are
given a 1-planar embedding. Note that our algorithm does not need such an
embedding as input, it only needs to get a list of edge crossings that must
correspond to a 1-planar embedding. However, for our correctness analysis it is
important to have a 1-planar embedding of the graph.

References

1. Christopher Auer, Franz J. Brandenburg, Andreas Gleißner, and Josef Reislhuber.
1-planarity of graphs with a rotation system. Journal of Graph Algorithms and
Applications, 19(1):67–86, 2015.

2. Michael J. Bannister, Sergio Cabello, and David Eppstein. Parameterized com-
plexity of 1-planarity. In Frank Dehne, Roberto Solis-Oba, and Jörg-Rüdiger Sack,
editors, Algorithms and Data Structures - 13th International Symposium, WADS
2013, London, ON, Canada, August 12-14, 2013. Proceedings, volume 8037 of Lec-
ture Notes in Computer Science, pages 97–108. Springer, 2013.

3. Francisco Barahona. On the computational complexity of ising spin glass models.
Journal of Physics A: Mathematical and General, 15(10):3241, 1982.

4. Francisco Barahona. Balancing signed toroidal graphs in polynomial time. Depar-
tamento de Matematicas, Universidad de Chile, Santiago, Chile, 1983.

5. Francisco Barahona. The max-cut problem on graphs not contractible to k5. Op-
erations Research Letters, 2(3):107–111, 1983.

6. Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An
application of combinatorial optimization to statistical physics and circuit layout
design. Operations Research, 36(3):493–513, 1988.

7. Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar
graph on a grid. Combinatorica, 10(1):41–51, Mar 1990.

8. Caterina De Simone, Martin Diehl, Michael Jünger, Petra Mutzel, Gerhard Reinelt,
and Giovanni Rinaldi. Exact ground states of ising spin glasses: New experimen-
tal results with a branch-and-cut algorithm. Journal of Statistical Physics, 80(1-
2):487–496, 1995.

9. Anna Galluccio and Martin Loebl. Max cut in toroidal graphs. Instituto di Analisi
dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche, Oktober 1998.

10. Michel X. Goemans and David P. Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite program-
ming. Journal of the ACM (JACM), 42(6):1115–1145, 1995.

11. Martin Grötschel and George L. Nemhauser. A polynomial algorithm for the
max-cut problem on graphs without long odd cycles. Mathematical Programming,
29(1):28–40, 1984.

12. Martin Grötschel and William R. Pulleyblank. Weakly bipartite graphs and the
max-cut problem. Operations Research Letters, 1(1):23–27, 1981.

13. F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM
Journal on Computing, 4(3):221–225, 1975.

14. John E. Hopcroft and Robert E. Tarjan. Dividing a graph into triconnected com-
ponents. SIAM Journal on Computing, 2(3):135–158, 1973.

15. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Proceedings of a symposium on the Com-
plexity of Computer Computations, New York, The IBM Research Symposia Series,
pages 85–103. Plenum Press, New York, 1972.

12

16. Vladimir P. Korzhik and Bojan Mohar. Minimal obstructions for 1-immersions
and hardness of 1-planarity testing. Journal of Graph Theory, 72(1):30–71, 2013.

17. Frauke Liers and Gregor Pardella. A simple MAX-CUT algorithm for planar
graphs. In Sonia Cafieri, Antonio Mucherino, Giacomo Nannicini, Fabien Taris-
san, and Leo Liberti, editors, Proceedings of the 8th Cologne-Twente Workshop
on Graphs and Combinatorial Optimization, CTW 2009, Paris, France, June 2-4
2009, pages 351–354, 2009.

18. Frauke Liers and Gregor Pardella. Partitioning planar graphs: a fast combinatorial
approach for max-cut. Comp. Opt. and Appl., 51(1):323–344, 2012.

19. Sanjeev Mahajan and H. Ramesh. Derandomizing approximation algorithms based
on semidefinite programming. SIAM Journal on Computing, 28(5):1641–1663,
1999.

20. Catherine C. McGeoch. Adiabatic Quantum Computation and Quantum Anneal-
ing: Theory and Practice. Synthesis Lectures on Quantum Computing. Morgan &
Claypool Publishers, 2014.

21. Petra Mutzel. Graphenalgorithmen, Master Vertiefungsvorlesung. Fakultät für
Informatik, TU Dortmund, 2016.

22. G. I. Orlova and Ya. G. Dorfman. Finding the maximum cut in a graph. Engi-
neering Cybernetics, 10(3):502–506, 1972.

23. János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Combina-
torica, 17(3):427–439, 1997.

24. Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation,
and complexity classes. Journal of Computer and System Sciences, 43(3):425 –
440, 1991.

25. Wei-Kuan Shih, Sun Wu, and Yue-Sun Kuo. Unifying maximum cut and minimum
cut of a planar graph. IEEE Transactions on Computers, 39(5):694–697, 1990.

	A Fixed-Parameter Algorithm for the Max-Cut Problem on Embedded 1-Planar Graphs
	1 Introduction
	2 Preliminaries
	3 Max-Cut for embedded 1-planar graphs
	3.1 Removing the crossings
	3.2 The Max-Cut Algorithm
	3.3 Correctness
	3.4 Running time

	4 Conclusion and open problems

