Skip to main content

Minsum k-Sink Problem on Dynamic Flow Path Networks

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10979))

Included in the following conference series:

Abstract

In emergencies such as earthquakes, nuclear accidents, etc., we need an evacuation plan. We model a street, a building corridor, etc. by a path network, and consider the problem of locating a set of k sinks on a dynamic flow path network with n vertices, where people are located, that minimizes the sum of the evacuation times of all evacuees. Our minsum model is more difficult to deal with than the minmax model, because the cost function is not monotone along the path. We present an \(O(kn^2\log ^2 n)\) time algorithm for solving this problem, which is the first polynomial time result. If the edge capacities are uniform, we give an \(O(kn\log ^3 n)\) time algorithm.

This work was supported in part by NSERC Discovery Grants, awarded to R. Benkoczi and B. Bhattacharya, in part by JST CREST Grant Number JPMJCR1402 held by N. Katoh and Y. Higashikawa, and in part by JSPS Kakenhi Grant-in-Aid for Young Scientists (B) (17K12641) given to Y. Higashikawa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Sects. 3 and 4, for simplicity, we will often identify a vertex with its index, referring to vertex i, instead of vertex \(v_i\).

  2. 2.

    We use the term “node” for \(\mathcal T\) to distinguish them from the vertices of P.

References

  1. Arumugam, G.P., Augustine, J., Golin, M., Srikanthan, P.: A polynomial time algorithm for minimax-regret evacuation on a dynamic path. arXiv:1404,5448v1 [cs.DS], 22 April 2014, 165 (2014)

  2. Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N.: Improved algorithms for computing k-sink on dynamic flow path networks. In: Ellen, F., Kolokolova, A., Sack, J.R. (eds.) Algorithms and Data Structures. LNCS, vol. 10389, pp. 133–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_12

    Chapter  MATH  Google Scholar 

  3. Bhattacharya, B., Kameda, T.: Improved algorithms for computing minmax regret sinks on path and tree networks. Theoret. Comput. Sci. 607, 411–425 (2015)

    Article  MathSciNet  Google Scholar 

  4. Chen, D., Golin, M.: Sink evacuation on trees with dynamic confluent flows. In: Hong, S.-H. (ed.) 27th International Symposium on Algorithms and Computation (ISAAC), Leibniz International Proceedings in Informatics, pp. 25:1–25:13 (2016)

    Google Scholar 

  5. Cheng, S.-W., Higashikawa, Y., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax regret 1-sink location problems in dynamic path networks. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) Theory and Applications of Models of Computation. LNCS, vol. 7876, pp. 121–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38236-9_12

    Chapter  Google Scholar 

  6. Hamacher, H., Tjandra, S.: Mathematical modelling of evacuation problems: a state of the art. In: Pedestrian and Evacuation Dynamics, pp. 227–266. Springer (2002)

    Google Scholar 

  7. Hassin, R., Tamir, A.: Improved complexity bounds for location problems on the real line. Oper. Res. Lett. 10(7), 395–402 (1991)

    Article  MathSciNet  Google Scholar 

  8. Higashikawa, Y., Augustine, J., Cheng, S.W., Golin, M.J., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax regret 1-sink location problem in dynamic path networks. Theoret. Comput. Sci. 588(11), 24–36 (2015)

    Article  MathSciNet  Google Scholar 

  9. Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location problem in dynamic tree networks with uniform capacity. J. Graph Algorithms Appl. 18(4), 539–555 (2014)

    Article  MathSciNet  Google Scholar 

  10. Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in dynamic path networks. Theoret. Comput. Sci. 607(1), 2–15 (2015)

    Article  MathSciNet  Google Scholar 

  11. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems, Part II: the \(p\)-median. SIAM J. Appl. Math. 37, 539–560 (1979)

    Article  MathSciNet  Google Scholar 

  12. Mamada, S., Uno, T., Makino, K., Fujishige, S.: An \({O}(n\log ^2 n)\) algorithm for a sink location problem in dynamic tree networks. Discrete Appl. Math. 154, 2387–2401 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsunehiko Kameda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N. (2018). Minsum k-Sink Problem on Dynamic Flow Path Networks. In: Iliopoulos, C., Leong, H., Sung, WK. (eds) Combinatorial Algorithms. IWOCA 2018. Lecture Notes in Computer Science(), vol 10979. Springer, Cham. https://doi.org/10.1007/978-3-319-94667-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94667-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94666-5

  • Online ISBN: 978-3-319-94667-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics