Skip to main content

On Colorful Bin Packing Games

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

  • 1493 Accesses

Abstract

We consider colorful bin packing games in which a set of items, each one controlled by a selfish player, are to be packed into a minimum number of unit capacity bins. Each item has one of \(m \ge 2\) colors and no items of the same color may be adjacent in a bin. All bins have the same unitary cost which is shared among the items it contains, so that players are interested in selecting a bin of minimum shared cost. We adopt two standard cost sharing functions, i.e., the egalitarian and the proportional ones. Although, under both cost functions, these games do not converge in general to a (pure) Nash equilibrium, we show that Nash equilibria are guaranteed to exist. We also provide a complete characterization of the efficiency of Nash equilibria under both cost functions for general games, by showing that the prices of anarchy and stability are unbounded when \(m\ge 3\), while they are equal to 3 when \(m=2\). We finally focus on the subcase of games with uniform sizes (i.e., all items have the same size). We show a tight characterization of the efficiency of Nash equilibria and design an algorithm which returns Nash equilibria with best achievable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adar, R.: Selfish bin packing with cardinality constraints. Theor. Comput. Sci. 495, 66–80 (2013)

    Article  MathSciNet  Google Scholar 

  2. Balogh, J., Békési, J., Dósa, G., Epstein, L., Kellerer, H., Tuza, Z.: Online results for black and white bin packing. Theory Comput. Syst. 56(1), 137–155 (2015)

    Article  MathSciNet  Google Scholar 

  3. Balogh, J., Békési, J., Dósa, G., Epstein, L., Kellerer, H., Levin, A., Tuza, Z.: Offline black and white bin packing. Theor. Comput. Sci. 596, 92–101 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bilò, V.: On the packing of selfish items. In: 20th International Parallel and Distributed Processing Symposium - IPDPS, IEEE (2006)

    Google Scholar 

  5. Böhm, M., Sgall, J., Veselý, P.: Online colored bin packing. In: Bampis, E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952, pp. 35–46. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18263-6_4

    Chapter  MATH  Google Scholar 

  6. Böhm, M., Dósa, G., Epstein, L., Sgall, J., Veselý, P.: Colored bin packing: online algorithms and lower bounds. Algorithmica 80(1), 155–184 (2018)

    Article  MathSciNet  Google Scholar 

  7. Cao, Z., Yang, X.: Selfish bin covering. Theor. Comput. Sci. 412(50), 7049–7058 (2011)

    Article  MathSciNet  Google Scholar 

  8. Coffman Jr., E.-G., Garey, M.-R., Johnson, D.-S.: Approximation algorithms for bin packing: a survey. In: Approximation Algorithms for NP-hard Problems. PWS Publishing Co. (1996)

    Google Scholar 

  9. Dósa, G., Epstein, L.: The Convergence time for selfish bin packing. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 37–48. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44803-8_4

    Chapter  Google Scholar 

  10. Dósa, G., Epstein, L.: Generalized selfish bin packing. CoRR, abs/1202.4080 (2012)

    Google Scholar 

  11. Dósa, G., Epstein, L.: Colorful bin packing. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 170–181. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_15

    Chapter  Google Scholar 

  12. Epstein, L.: Bin packing games with selfish items. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 8–21. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-2_2

    Chapter  Google Scholar 

  13. Epstein, L., Kleiman, E.: Selfish bin packing. Algorithmica 60(2), 368–394 (2011)

    Article  MathSciNet  Google Scholar 

  14. Epstein, L., Kleiman, E.: Selfish vector packing. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 471–482. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_40

    Chapter  Google Scholar 

  15. Epstein, L., Krumke, S.-O., Levin, A., Sperber, H.: Selfish bin coloring. J. Comb. Optim. 22(4), 531–548 (2011)

    Article  MathSciNet  Google Scholar 

  16. Fernandes, C.-G., Ferreira, C.-E., Miyazawa, F.-K., Wakabayashi, Y.: Selfish square packing. Electron. Notes Discrete Math. 37(1), 369–374 (2011)

    Article  MathSciNet  Google Scholar 

  17. Krumke, S.-O., de Paepe, W., Rambau, J., Stougie, L.: Bincoloring. Theor. Comput. Sci. 407(1–3), 231–241 (2008)

    Article  MathSciNet  Google Scholar 

  18. Ma, R., Dósa, G., Han, X., Ting, H., Ye, D., Zhang, Y.: A note on a selfish bin packing problem. J. Global Optim. 56(4), 1457–1462 (2013)

    Article  MathSciNet  Google Scholar 

  19. Yu, G., Zhang, G.: Bin packing of selfish items. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 446–453. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92185-1_50

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Bilò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bilò, V., Cellinese, F., Melideo, G., Monaco, G. (2018). On Colorful Bin Packing Games. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics