Abstract
We consider colorful bin packing games in which a set of items, each one controlled by a selfish player, are to be packed into a minimum number of unit capacity bins. Each item has one of \(m \ge 2\) colors and no items of the same color may be adjacent in a bin. All bins have the same unitary cost which is shared among the items it contains, so that players are interested in selecting a bin of minimum shared cost. We adopt two standard cost sharing functions, i.e., the egalitarian and the proportional ones. Although, under both cost functions, these games do not converge in general to a (pure) Nash equilibrium, we show that Nash equilibria are guaranteed to exist. We also provide a complete characterization of the efficiency of Nash equilibria under both cost functions for general games, by showing that the prices of anarchy and stability are unbounded when \(m\ge 3\), while they are equal to 3 when \(m=2\). We finally focus on the subcase of games with uniform sizes (i.e., all items have the same size). We show a tight characterization of the efficiency of Nash equilibria and design an algorithm which returns Nash equilibria with best achievable performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adar, R.: Selfish bin packing with cardinality constraints. Theor. Comput. Sci. 495, 66–80 (2013)
Balogh, J., Békési, J., Dósa, G., Epstein, L., Kellerer, H., Tuza, Z.: Online results for black and white bin packing. Theory Comput. Syst. 56(1), 137–155 (2015)
Balogh, J., Békési, J., Dósa, G., Epstein, L., Kellerer, H., Levin, A., Tuza, Z.: Offline black and white bin packing. Theor. Comput. Sci. 596, 92–101 (2015)
Bilò, V.: On the packing of selfish items. In: 20th International Parallel and Distributed Processing Symposium - IPDPS, IEEE (2006)
Böhm, M., Sgall, J., Veselý, P.: Online colored bin packing. In: Bampis, E., Svensson, O. (eds.) WAOA 2014. LNCS, vol. 8952, pp. 35–46. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18263-6_4
Böhm, M., Dósa, G., Epstein, L., Sgall, J., Veselý, P.: Colored bin packing: online algorithms and lower bounds. Algorithmica 80(1), 155–184 (2018)
Cao, Z., Yang, X.: Selfish bin covering. Theor. Comput. Sci. 412(50), 7049–7058 (2011)
Coffman Jr., E.-G., Garey, M.-R., Johnson, D.-S.: Approximation algorithms for bin packing: a survey. In: Approximation Algorithms for NP-hard Problems. PWS Publishing Co. (1996)
Dósa, G., Epstein, L.: The Convergence time for selfish bin packing. In: Lavi, R. (ed.) SAGT 2014. LNCS, vol. 8768, pp. 37–48. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44803-8_4
Dósa, G., Epstein, L.: Generalized selfish bin packing. CoRR, abs/1202.4080 (2012)
Dósa, G., Epstein, L.: Colorful bin packing. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 170–181. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_15
Epstein, L.: Bin packing games with selfish items. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 8–21. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40313-2_2
Epstein, L., Kleiman, E.: Selfish bin packing. Algorithmica 60(2), 368–394 (2011)
Epstein, L., Kleiman, E.: Selfish vector packing. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 471–482. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_40
Epstein, L., Krumke, S.-O., Levin, A., Sperber, H.: Selfish bin coloring. J. Comb. Optim. 22(4), 531–548 (2011)
Fernandes, C.-G., Ferreira, C.-E., Miyazawa, F.-K., Wakabayashi, Y.: Selfish square packing. Electron. Notes Discrete Math. 37(1), 369–374 (2011)
Krumke, S.-O., de Paepe, W., Rambau, J., Stougie, L.: Bincoloring. Theor. Comput. Sci. 407(1–3), 231–241 (2008)
Ma, R., Dósa, G., Han, X., Ting, H., Ye, D., Zhang, Y.: A note on a selfish bin packing problem. J. Global Optim. 56(4), 1457–1462 (2013)
Yu, G., Zhang, G.: Bin packing of selfish items. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 446–453. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92185-1_50
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Bilò, V., Cellinese, F., Melideo, G., Monaco, G. (2018). On Colorful Bin Packing Games. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-94776-1_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94775-4
Online ISBN: 978-3-319-94776-1
eBook Packages: Computer ScienceComputer Science (R0)