Skip to main content

Reconfiguration of Satisfying Assignments and Subset Sums: Easy to Find, Hard to Connect

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

  • 1495 Accesses

Abstract

We consider the computational complexity of reconfiguration problems, in which one is given two combinatorial configurations satisfying some constraints, and is asked to transform one into the other using elementary transformations, while satisfying the constraints at all times. Such problems appear naturally in many contexts, such as model checking, motion planning, enumeration and sampling, and recreational mathematics. We provide hardness results for problems in this family, in which the constraints and operations are particularly simple.

More precisely, we prove the \(\mathsf {PSPACE}\)-completeness of the following decision problems:

  • Given two satisfying assignments to a planar monotone instance of Not-All-Equal 3-SAT, can one assignment be transformed into the other by single variable “flips” (assignment changes), preserving satisfiability at every step?

  • Given two subsets of a set S of integers with the same sum, can one subset be transformed into the other by adding or removing at most three elements of S at a time, such that the intermediate subsets also have the same sum?

  • Given two points in \(\{0,1\}^n\) contained in a polytope P specified by a constant number of linear inequalities, is there a path in the n-hypercube connecting the two points and contained in P?

These problems can be interpreted as reconfiguration analogues of standard problems in \(\mathsf {NP}\). Interestingly, the instances of the \(\mathsf {NP}\) problems that appear as input to the reconfiguration problems in our reductions can be shown to lie in \(\mathsf {P}\). In particular, the elements of S and the coefficients of the inequalities defining P can be restricted to have logarithmic bit-length.

A preprint of this paper containing three omitted proofs is available on arXiv: https://arxiv.org/abs/1805.04055.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    MIT Course 6.890, “Algorithmic Lower Bounds: Fun with Hardness Proofs” (Fall ’14), Lecture 17.

References

  1. Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs. J. Comb. Optim. 27(1), 132–143 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bonsma, P.S.: The complexity of rerouting shortest paths. Theor. Comput. Sci. 510, 1–12 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bonsma, P.S., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–5226 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-free graphs. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 86–97. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_8

    Chapter  Google Scholar 

  5. Bonsma, P., Mouawad, A.E., Nishimura, N., Raman, V.: The complexity of bounded length graph recoloring and CSP reconfiguration. In: Cygan, M., Heggernes, P. (eds.) IPEC 2014. LNCS, vol. 8894, pp. 110–121. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13524-3_10

    Chapter  MATH  Google Scholar 

  6. Bonsma, P.S.: Independent set reconfiguration in cographs and their generalizations. J. Graph Theory 83(2), 164–195 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. Graph Theory 67(1), 69–82 (2011)

    Article  MathSciNet  Google Scholar 

  8. Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T., Ono, H., Otachi, Y., Uehara, R., Yamada, T.: Linear-time algorithm for sliding tokens on trees. Theor. Comput. Sci. 600, 132–142 (2015)

    Article  MathSciNet  Google Scholar 

  9. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)

    Article  MathSciNet  Google Scholar 

  10. Haddadan, A., Ito, T., Mouawad, A.E., Nishimura, N., Ono, H., Suzuki, A., Tebbal, Y.: The complexity of dominating set reconfiguration. Theor. Comput. Sci. 651, 37–49 (2016)

    Article  MathSciNet  Google Scholar 

  11. Hearn, R.E., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343(1–2), 72–86 (2005)

    Article  MathSciNet  Google Scholar 

  12. Hearn, R.E., Demaine, E.D.: Games, Puzzles, & Computation. A. K. Peters/CRC Press, Boca Raton (2009)

    MATH  Google Scholar 

  13. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series (2013)

    Google Scholar 

  14. Hoang, D.A., Uehara, R.: Sliding tokens on a cactus. In: 27th International Symposium on Algorithms and Computation (ISAAC), pp. 37:1–37:26 (2016)

    Google Scholar 

  15. Ito, T., Demaine, E.D.: Approximability of the subset sum reconfiguration problem. J. Comb. Optim. 28(3), 639–654 (2014)

    Article  MathSciNet  Google Scholar 

  16. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412, 154–165 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Ito, T., Kaminski, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. Discrete Appl. Math. 160(15), 2199–2207 (2012)

    Article  MathSciNet  Google Scholar 

  18. Ito, T., Nooka, H., Zhou, X.: Reconfiguration of vertex covers in a graph. IEICE Trans. 99–D(3), 598–606 (2016)

    Article  Google Scholar 

  19. Kaminski, M., Medvedev, P., Milanic, M.: Shortest paths between shortest paths. Theor. Comput. Sci. 412(39), 5205–5210 (2011)

    Article  MathSciNet  Google Scholar 

  20. Kaminski, M., Medvedev, P., Milanic, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)

    Article  MathSciNet  Google Scholar 

  21. Lichtenstein, D.: Planar satisfiability and its uses. SIAM J. Comput. 11, 329–343 (1982)

    Article  MathSciNet  Google Scholar 

  22. Makino, K., Tamaki, S., Yamamoto, M.: On the Boolean connectivity problem for Horn relations. Discrete Appl. Math. 158(18), 2024–2030 (2010)

    Article  MathSciNet  Google Scholar 

  23. Makino, K., Tamaki, S., Yamamoto, M.: An exact algorithm for the Boolean connectivity problem for k-CNF. Theor. Comput. Sci. 412(35), 4613–4618 (2011)

    Article  MathSciNet  Google Scholar 

  24. Mizuta, H., Ito, T., Zhou, X.: Reconfiguration of Steiner trees in an unweighted graph. In: Mäkinen, V., Puglisi, S.J., Salmela, L. (eds.) IWOCA 2016. LNCS, vol. 9843, pp. 163–175. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44543-4_13

    Chapter  Google Scholar 

  25. Moret, B.M.E.: Planar NAE3SAT is in P. ACM SIGACT News 19(2), 51–54 (1988)

    Article  Google Scholar 

  26. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solution space of Boolean formulas. In: 42nd International Colloquium on Automata, Languages, and Programming (ICALP), pp. 985–996 (2015)

    Chapter  Google Scholar 

  27. Scharpfenecker, P.: On the structure of solution-graphs for Boolean formulas. In: Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 118–130. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22177-9_10

    Chapter  MATH  Google Scholar 

  28. Schwerdtfeger, K.W.: A computational trichotomy for connectivity of Boolean satisfiability. JSAT 8(3/4), 173–195 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Slocum, J., Sonneveld, D.: The 15 puzzle: how it drove the world crazy. The Slocum Puzzle Foundation (2006)

    Google Scholar 

Download references

Acknowledgements

This work was initiated at the 32nd Bellairs Winter Workshop on Computational Geometry, January 27–February 3, 2017. We thank the other participants of the workshop for a productive and positive atmosphere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Winslow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cardinal, J., Demaine, E.D., Eppstein, D., Hearn, R.A., Winslow, A. (2018). Reconfiguration of Satisfying Assignments and Subset Sums: Easy to Find, Hard to Connect. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics