Skip to main content

Minimum Spanning Tree of Line Segments

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

  • 1544 Accesses

Abstract

In this article, we study a variant of the geometric minimum spanning tree (MST) problem. Given a set \(\mathcal{S}\) of n disjoint line segments in , we need to find a tree spanning one endpoint from each of the segments in \(\mathcal{S}\). Note that, we have \(2^n\) possible choices of such a set of endpoints, each being referred as an instance. Thus, our objective is to choose one among those instances such that the sum of the lengths of all the edges of the tree spanning the points of that instance is minimum. We show that finding such a spanning tree is NP-complete in general, and propose a \(O(\log ^2 n)\)-factor approximation algorithm for the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Its vertices are the 2n segment endpoints; two vertices a and b are connected by an edge, if and only if the corresponding line segment ab is either in \(\mathcal{S}\) or if the open segment ab does not intersect any (closed) segment from \(\mathcal{S}\).

  2. 2.

    A variable gadget may be connected with multiple literal gadgets.

  3. 3.

    This segment corresponds to the binary relation or.

  4. 4.

    Only one endpoint of a segment can participate in the tree.

  5. 5.

    The maximum possible distance between a pair of points.

  6. 6.

    In each iteration at least half of the segments are deleted from \(\mathcal{S}\).

References

  1. Agarwal, P.K., Edelsbrunner, H., Schwarzkopf, O., Welzl, E.: Euclidean minimum spanning trees and bichromatic closest pairs. Discret. Comput. Geom. 6(1), 407–422 (1991)

    Article  MathSciNet  Google Scholar 

  2. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM (JACM) 45(5), 753–782 (1998)

    Article  MathSciNet  Google Scholar 

  3. Awerbuch, B., Azar, Y., Blum, A., Vempala, S.: New approximation guarantees for minimum-weight \(k\)-trees and prize-collecting salesmen. SIAM J. Comput. 28(1), 254–262 (1998)

    Article  MathSciNet  Google Scholar 

  4. Blum, A., Chalasani, P., Vempala, S.: A constant-factor approximation for the \(k\)-MST problem in the plane. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, pp. 294–302. ACM (1995)

    Google Scholar 

  5. Borgelt, M.G., Van Kreveld, M., Löffler, M., Luo, J., Merrick, D., Silveira, R.I., Vahedi, M.: Planar bichromatic minimum spanning trees. J. Discret. Algorithms 7(4), 469–478 (2009)

    Article  MathSciNet  Google Scholar 

  6. Bose, P., Houle, M.E., Toussaint, G.T.: Every set of disjoint line segments admits a binary tree. Discret. Comput. Geom. 26(3), 387–410 (2001)

    Article  MathSciNet  Google Scholar 

  7. Bose, P., Smid, M.: On plane geometric spanners: a survey and open problems. Comput. Geom. 46(7), 818–830 (2013)

    Article  MathSciNet  Google Scholar 

  8. Bose, P., Toussaint, G.: Growing a tree from its branches. J. Algorithms 19(1), 86–103 (1995)

    Article  MathSciNet  Google Scholar 

  9. Chlebík, M., Chlebíková, J.: The steiner tree problem on graphs: inapproximability results. Theoret. Comput. Sci. 406(3), 207–214 (2008)

    Article  MathSciNet  Google Scholar 

  10. Daescu, O., Ju, W., Luo, J.: NP-completeness of spreading colored points. In: Wu, W., Daescu, O. (eds.) COCOA 2010. LNCS, vol. 6508, pp. 41–50. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17458-2_5

    Chapter  Google Scholar 

  11. Eppstein, D.: Spanning trees and spanners (1996). https://www2.cs.duke.edu/courses/spring07/cps296.2/papers/SpanningTrees.pdf

  12. Eppstein, D.: Faster geometric \(k\)-point MST approximation. Comput. Geom. 8(5), 231–240 (1997)

    Article  MathSciNet  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W. H. Freeman, New York (2002)

    Google Scholar 

  14. Garg, N.: Saving an epsilon: a 2-approximation for the \(k\)-MST problem in graphs. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 396–402. ACM (2005)

    Google Scholar 

  15. Garg, N., Hochbaum, D.S.: An \({O}(\log k)\) approximation algorithm for the \(k\) minimum spanning tree problem in the plane. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, pp. 432–438. ACM (1994)

    Google Scholar 

  16. Hoffmann, M., Speckmann, B., Tóth, C.D.: Pointed binary encompassing trees: simple and optimal. Comput. Geom. 43(1), 35–41 (2010)

    Article  MathSciNet  Google Scholar 

  17. Hoffmann, M., Tóth, C.D.: Segment endpoint visibility graphs are hamiltonian. Comput. Geom. 26(1), 47–68 (2003)

    Article  MathSciNet  Google Scholar 

  18. Mitchell, J.S.: Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric tsp, \(k\)-MST, and related problems. SIAM J. Comput. 28(4), 1298–1309 (1999)

    Article  MathSciNet  Google Scholar 

  19. Rajagopalan, S., Vazirani, V.: Logarithmic approximation of minimum weight \(k\) trees. Unpublished Manuscript (1995)

    Google Scholar 

  20. Rappaport, D., Imai, H., Toussaint, G.T.: Computing simple circuits from a set of line segments. Discret. Comput. Geom. 5(1), 289–304 (1990)

    Article  MathSciNet  Google Scholar 

  21. Ravi, R., Sundaram, R., Marathe, M.V., Rosenkrantz, D.J., Ravi, S.S.: Spanning trees - short or small. SIAM J. Discret. Math. 9(2), 178–200 (1996)

    Article  MathSciNet  Google Scholar 

  22. Smid, M.: The well-separated pair decomposition and its applications (2016). https://people.scs.carleton.ca/~michiel/aa-handbook.pdf

  23. Zelikovsky, A., Lozevanu, D.: Minimal and bounded trees. In: Tezele Cong. XVIII Acad. Romano-Americane, Kishniev, pp. 25–26 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhas C. Nandy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dey, S., Jallu, R.K., Nandy, S.C. (2018). Minimum Spanning Tree of Line Segments. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics