Skip to main content

Evaluating Runs of Homozygosity in Exome Sequencing Data - Utility in Disease Inheritance Model Selection and Variant Filtering

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2017)

Abstract

Runs of homozygosity (ROH) are regions consistently homozygous for genetic markers, which can occur throughout the human genome. Their size is dependent on the degree of shared parental ancestry, being longer in individuals descending from consanguineous marriages, or from inbred/isolated populations. Based on ROH existence, homozygosity mapping (HM) was developed as powerful tool for gene-discovery in human genetics. HM is based on the assumption that, through identity-by-descent, individuals affected by an autosomal recessive (AR) condition, are more likely to have homozygous markers surrounding the disease locus.

In this work, we reviewed some of the algorithms and bioinformatics tools available for HM and ROH detection, with special emphasis on those than can be applied to data from whole-exome sequencing (WES) data. Preliminary data is also shown demonstrating the relevance of performing ROH analysis, especially in sporadic cases. In this study, ROH from WES data of twelve unrelated patients was analyzed. Patients with AR diseases (n = 6) were subdivided into two groups: homozygous and compound heterozygous. ROH analysis was performed using the HomozygosityMapper software, varying the block length and collecting several parameters. Statistically significant differences between the two groups were identified for ROH total size and homozygosity score. The k-means clustering algorithm was then applied, where two clusters were identified, with statistically significant differences, corresponding to each predefined test group. Our results suggest that, in some cases, it may be possible to infer the most likely disease inheritance model from WES data alone, constituting a useful starting point for the subsequent variant filtering strategies.

J. Oliveira and R. Pereira—Equally contributing authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miko, I.: Gregor mendel and the principles of inheritance. Nat. Educ. 1(1), 134 (2008)

    MathSciNet  Google Scholar 

  2. Christianson, A., Howson, C.P., Modell, B.: Global report on birth defects: the hidden toll of dying and disabled children, New York (2006)

    Google Scholar 

  3. Lobo, I., Shaw, K.: Discovery and types of genetic linkage. Nat. Educ. 1(1), 139 (2008)

    Google Scholar 

  4. Slatkin, M.: Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9(6), 477–485 (2008)

    Article  Google Scholar 

  5. Sanger, F., Nicklen, S., Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. PNAS 74(12), 5463–5467 (1977)

    Article  Google Scholar 

  6. Boycott, K.M., et al.: Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat. Rev. Genet. 14(10), 681–691 (2013)

    Article  Google Scholar 

  7. Xia, J., et al.: NGS catalog: a database of next generation sequencing studies in humans. Hum. Mutat. 33(6), E2341–E2355 (2012)

    Article  Google Scholar 

  8. Koboldt, D.C., et al.: The next-generation sequencing revolution and its impact on genomics. Cell 155(1), 27–38 (2013)

    Article  Google Scholar 

  9. Bittles, A.H.: Consanguinity and its relevance to clinical genetics. Clin. Genet. 60(2), 89–98 (2001)

    Article  Google Scholar 

  10. Instituto Nacional de Estatística: Marriages (Between persons of the opposite sex - No.) by Place of registration (NUTS - 2002), Sex, Relationship or affinity between the spouses and Spouse previous marital status; Annual

    Google Scholar 

  11. McQuillan, R., et al.: Runs of homozygosity in European populations. Am. J. Hum. Genet. 83(3), 359–372 (2008)

    Article  Google Scholar 

  12. Lander, E.S., Botstein, D.: Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236(4808), 1568–1570 (1987)

    Article  Google Scholar 

  13. Alkuraya, F.S.: Autozygome decoded. Genet. Med. 12(12), 765–771 (2010)

    Article  Google Scholar 

  14. Goodship, J., et al.: Report autozygosity mapping of a Seckel syndrome locus to chromosome 3q22.1-q24. Am. J. Hum. Genet. 67, 498–503 (2000)

    Article  Google Scholar 

  15. Alkuraya, F.S.: Homozygosity mapping: one more tool in the clinical geneticist’s toolbox. Genet. Med. 12(4), 236–239 (2010)

    Article  Google Scholar 

  16. Syvänen, A.-C.: Toward genome-wide SNP genotyping. Nat. Genet. 37(6s), S5 (2005)

    Article  Google Scholar 

  17. Gibbs, J.R., Singleton, A.: Application of genome-wide single nucleotide polymorphism typing: simple association and beyond. PLoS Genet. 2(10), e150 (2006)

    Article  Google Scholar 

  18. Evans, D.M., Cardon, L.R.: Guidelines for genotyping in genomewide linkage studies: single-nucleotide–polymorphism maps versus microsatellite maps. Am. J. Hum. Genet. 75(4), 687–692 (2004)

    Article  Google Scholar 

  19. Wang, Z., Gerstein, M., Snyder, M.: RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1), 57–63 (2009)

    Article  Google Scholar 

  20. Park, P.J.: ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10(10), 669–680 (2009)

    Article  Google Scholar 

  21. Li, Y., Tollefsbol, T.O.: DNA methylation detection: bisulfite genomic sequencing analysis. In: Tollefsbol, T. (ed.) Methods in Molecular Biology, vol. 791, pp. 11–21. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-61779-316-5_2

    Chapter  Google Scholar 

  22. Mardis, E.R.: The impact of next-generation sequencing technology on genetics. Trends Genet. 24(3), 133–141 (2008)

    Article  Google Scholar 

  23. Ng, S.B., et al.: Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 42(1), 30–35 (2010)

    Article  MathSciNet  Google Scholar 

  24. Oliveira, J., et al.: New splicing mutation in the choline kinase beta (CHKB) gene causing a muscular dystrophy detected by whole-exome sequencing. J. Hum. Genet. 60(6), 305 (2015)

    Article  Google Scholar 

  25. Pereira, R., et al.: Mutation analysis in patients with total sperm immotility. J. Assist. Reprod. Genet. 32(6), 893–902 (2015)

    Article  Google Scholar 

  26. Antonarakis, S.E., Krawczak, M., Cooper, D.N.: Disease-causing mutations in the human genome. Eur. J. Pediatr. 159(Suppl), S173–S178 (2000)

    Article  Google Scholar 

  27. Gripp, K.W., et al.: Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome. Am. J. Med. Genet. Part A 167(2), 271–281 (2015)

    Article  Google Scholar 

  28. Norton, N., et al.: Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. Am. J. Hum. Genet. 88(3), 273–282 (2011)

    Article  Google Scholar 

  29. Sirmaci, A., et al.: Challenges in whole exome sequencing: an example from hereditary deafness. PLoS ONE 7(2), e32000 (2012)

    Article  Google Scholar 

  30. Sauna, Z.E., Kimchi-Sarfaty, C.: Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12(10), 683–691 (2011)

    Article  Google Scholar 

  31. Meienberg, J., et al.: Clinical sequencing: is WGS the better WES? Hum. Genet. 135(3), 359–362 (2016)

    Article  Google Scholar 

  32. Belkadi, A., et al.: Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Hum. Genet. 135, 359–362 (2016)

    Article  Google Scholar 

  33. Xu, W., et al.: Model-free linkage analysis of a binary trait. Stat. Hum. Genet.: Methods Protoc. 850, 317–345 (2012)

    Article  Google Scholar 

  34. Bailey-Wilson, J.E.: Parametric and nonparametric linkage analysis. In: Encyclopedia of Life Sciences. Wiley, Chichester (2006)

    Google Scholar 

  35. Pulst, S.M., et al.: Genetic linkage analysis. Arch. Neurol. 56(6), 667 (1999)

    Article  Google Scholar 

  36. Ott, J.: Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for human linkage studies. Am. J. Hum. Genet. 26(5), 588 (1974)

    Google Scholar 

  37. Elston, R.C., Stewart, J.: A general model for the genetic analysis of pedigree data. Hum. Hereditary 21, 523–542 (1971)

    Article  Google Scholar 

  38. Kruglyak, L., et al.: Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363 (1996)

    Google Scholar 

  39. Ghahramani, Z.: An introduction to hidden Markov models and Bayesian networks. Int. J. Pattern Recogn. Artif. Intell. 15(1), 9–42 (2001)

    Article  Google Scholar 

  40. Goedken, R., et al.: Drawbacks of GENEHUNTER for larger pedigrees: application to panic disorder. Am. J. Med. Genet. 96(6), 781–783 (2000)

    Article  Google Scholar 

  41. Sobel, E., Lange, K.: Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am. J. Hum. Genet. 58(6), 1323–1337 (1996)

    Google Scholar 

  42. Geyer, C.: Introduction to Markov chain Monte Carlo. In: Brooks, S., et al. (eds.) Handbook of Markov Chain Monte Carlo, pp. 3–48. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  43. Romero-Hidalgo, S., et al.: GENEHUNTER versus SimWalk2 in the context of an extended kindred and a qualitative trait locus. Genetica 123(3), 235–244 (2005)

    Article  Google Scholar 

  44. Abecasis, G.R., et al.: Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30(1), 97–101 (2002)

    Article  MathSciNet  Google Scholar 

  45. Dudbridge, F.: A survey of current software for linkage analysis. Hum. Genomics 1(1), 63 (2003)

    Article  Google Scholar 

  46. MacCluer, J.W., et al.: Pedigree analysis by computer simulation. Zoo Biol. 5(2), 147–160 (1986)

    Article  Google Scholar 

  47. Gudbjartsson, D.F., et al.: Allegro, a new computer program for multipoint linkage analysis. Nat. Genet. 25(1), 12–13 (2000)

    Article  Google Scholar 

  48. Alkuraya, F.S.: The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Hum. Genet. 132(11), 1197–1211 (2013)

    Article  Google Scholar 

  49. Krawitz, P.M., et al.: Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat. Genet. 42(10), 827–829 (2010)

    Article  Google Scholar 

  50. Becker, J., et al.: Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am. J. Hum. Genet. 88(3), 362–371 (2011)

    Article  Google Scholar 

  51. Seelow, D., Schuelke, M.: HomozygosityMapper2012—bridging the gap between homozygosity mapping and deep sequencing. Nucleic Acids Res. 40(W1), W516–W520 (2012)

    Article  Google Scholar 

  52. Seelow, D., et al.: HomozygosityMapper—an interactive approach to homozygosity mapping. Nucleic Acids Res. 37(Web Server issue), W593–W599 (2009)

    Article  Google Scholar 

  53. Purcell, S., et al.: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575 (2007)

    Article  MathSciNet  Google Scholar 

  54. Gusev, A., et al.: Whole population, genome-wide mapping of hidden relatedness. Genome Res. 19(2), 318–326 (2009)

    Article  MathSciNet  Google Scholar 

  55. Görmez, Z., et al.: HomSI: a homozygous stretch identifier from next-generation sequencing data. Bioinformatics 30(3), 445–447 (2013)

    Article  Google Scholar 

  56. Magi, A., et al.: H3M2: detection of runs of homozygosity from whole-exome sequencing data. Bioinformatics 30(20), 2852–2859 (2014)

    Article  Google Scholar 

  57. Carr, I.M., et al.: Autozygosity mapping with exome sequence data. Hum. Mutat. 34(1), 50–56 (2013)

    Article  Google Scholar 

  58. Seelow, D., et al.: GeneDistiller—distilling candidate genes from linkage intervals. PLoS ONE 3(12), e3874 (2008)

    Article  Google Scholar 

  59. Pippucci, T., et al.: EX-HOM (EXome HOMozygosity): a proof of principle. Hum. Hered. 72(1), 45–53 (2011)

    Article  Google Scholar 

  60. Tang, R., et al.: A variable-sized sliding-window approach for genetic association studies via principal component analysis. Ann. Hum. Genet. 73(Pt 6), 631–637 (2009)

    Article  Google Scholar 

  61. Barrett, J.C., et al.: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2), 263–265 (2004)

    Article  Google Scholar 

  62. Chang, C.: PLINK: whole genome data analysis toolset-identity by descent. https://www.cog-genomics.org/plink/1.9/ibd#homozyg

  63. Pippucci, T., et al.: Detection of runs of homozygosity from whole exome sequencing data: state of the art and perspectives for clinical, population and epidemiological studies. Hum. Hered. 77(1–4), 63–72 (2014)

    Article  Google Scholar 

  64. Oliveira, J., et al.: Homozygosity mapping using whole-exome sequencing: a valuable approach for pathogenic variant identification in genetic diseases. In: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOINFORMATICS, (BIOSTEC 2017), vol. 3, pp. 210–216 (2017)

    Google Scholar 

  65. Leigh, M.W., et al.: Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet. Med.: Off. J. Am. Coll. Med. Genet. 11(7), 473–487 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from: (i) Fundação para a Ciência e Tecnologia (FCT) [Grant ref.: PD/BD/105767/2014] (R.P.); (ii) Research grant attributed by “Fundo para a Investigação e Desenvolvimento do Centro Hospitalar do Porto” [Grant ref.: 336-13(196-DEFI/285-CES)] (J.O.). The work was also supported by the Institutions of the authors and in part by UMIB, which is funded by through FCT under the Pest-OE/SAU/UI0215/2014. The authors would like to thank the clinicians for patient referral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, J., Pereira, R., Santos, R., Sousa, M. (2018). Evaluating Runs of Homozygosity in Exome Sequencing Data - Utility in Disease Inheritance Model Selection and Variant Filtering. In: Peixoto, N., Silveira, M., Ali, H., Maciel, C., van den Broek, E. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2017. Communications in Computer and Information Science, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-94806-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94806-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94805-8

  • Online ISBN: 978-3-319-94806-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics