Skip to main content

Microfluidic Devices Integrating Clinical Alternative Diagnostic Techniques Based on Cell Mechanical Properties

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 881))

Abstract

The present paper discusses the development of a microfluidic (lab-on-chip) device to study cells deformability aiming at developing a new diagnostic system for cancer detection. The chip uses electrowetting for droplet transport and cell deformability, on an open configuration. The chip configuration is analyzed towards various steps, from the selection of the materials, to the evaluation of the chip performance. Wetting properties of the selected materials are shown to play a major role. Furthermore, experimental tests confirm the relevance of selecting materials less prone to adsorb the biocomponents, as they tend to locally alter the surface wettability, promoting energy dissipation at the droplet contact line and affecting its manipulation. A rough analysis on droplet evaporation effects suggests that they are not negligible, even at optimum working conditions that minimize the evaporation by mass diffusion (low temperatures and high relative humidity). In this context, exploitation of droplet based microfluidic devices for point-of-care diagnostics in harsh environments should take mass diffusion effects into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manz, A., Widmers, H.M., Graber, N.: Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators B Chem. 1(1–6), 244–248 (1990)

    Article  Google Scholar 

  2. Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M.R., Weigl, B.H.: Microfluidic diagnostic technologies for global public health. Nature 442(7101), 412–418 (2006)

    Article  Google Scholar 

  3. Dance, A.: The making of a medical microchip. Nature 545, 512–514 (2017)

    Google Scholar 

  4. Moita, A.S., Laurência, C., Ramos, J.A., Prazeres, D.M.F., Moreira, A.L.N.: Dynamics of droplets of biological fluids on smooth superhydrophobic surfaces under electrostatic actuation. J. Bionic Eng. 13, 220–234 (2016)

    Article  Google Scholar 

  5. Geng, H., Feng, J., Stabryl, L.M., Cho, S.K.: Dielectroetting manipulation for digital microfluidics: creating, transporting, splitting, and merging droplets. Lab Chip 17, 1060–1068 (2017)

    Article  Google Scholar 

  6. Berge, B.: Electrocapillarity and wetting of insulator films by water. Acad. Sci. Ser. II Mec. 317, 157–163 (1993)

    Google Scholar 

  7. Young, T.: An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 95, 65–87 (1805)

    Article  Google Scholar 

  8. Lippmann, G.: Relation entre les phénomènes électriques et capillaires. Ann. Chim. Phys. 5, 494–549 (1875). (in French)

    Google Scholar 

  9. Mugele, F., Baret, J.C.: Electrowetting: from basics to applications. J. Phys. Condens. Matter 17, R705–R774 (2005)

    Article  Google Scholar 

  10. Jones, T.B.: An electromechanical interpretation of electrowetting. J. Micromech. Microeng. 15, 1184–1187 (2005)

    Article  Google Scholar 

  11. Bahadur, V., Garimella, S.V.: An energy-based model for electrowetting-induced droplet actuation. J. Micromech. Microeng. 16, 1494–1503 (2006)

    Article  Google Scholar 

  12. Srinivasan, V., Pamula, V.K., Fair, R.B.: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4, 310–315 (2004)

    Article  Google Scholar 

  13. Wheeler, A.R., Moon, H., Kim, C.J., Loo, J.A., Garrell, R.L.: Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 76, 4833–4838 (2004)

    Article  Google Scholar 

  14. Rupp, F., Axmann, D., Ziegler, C., Geis-Gerstorfer, J.: Adsorption/desorption phenomena on pure and Teflon® AF-coated titania surfaces studied by dynamic contact angle analysis. J. Biomed. Mater. Res. 62, 567–578 (2002)

    Article  Google Scholar 

  15. Yon, J.Y., Garrell, R.L.: Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Anal. Chem. 75, 5097–5102 (2003)

    Article  Google Scholar 

  16. Suresh, S., Spatz, J., Mills, J.P., Micoulet, A., Dao, M., Lim, C.T., Beil, M., Seufferlein, T.: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1, 15–30 (2005)

    Article  Google Scholar 

  17. Cross, S.E., Jin, Y.-S., Rao, J., Gimzewski, J.K.: Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. Lett. 2, 780–783 (2005)

    Article  Google Scholar 

  18. Gosset, G.R., Tse, H.T.K., Lee, S.A., Ying, Y., Lidgren, A.G., Yang, O.O., Rao, J., Clark, A.T., Di Carlo, D.: Hydrodynamic stretching of single cells for large population mechanical phenotyping. PNAS 109(20), 7630–7635 (2009)

    Article  Google Scholar 

  19. Remmerbach, T.W., Wottawah, F., Dietrich, J., Lincoln, B., Wittekind, C., Guck, J.: Oral cancer diagnosis by mechanical phenotyping. Cancer Res. 69(5), 1728–1732 (2009)

    Article  Google Scholar 

  20. Tse, H.T.K., Gosset, D.R., Moon, Y.S., Masaeli, M., Sohsman, M., Ying, Y., Mislick, K., Adams, R.P., Rao, J., Di Carlo, D.: Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci. Transl. Med. 5(212), 1–9 (2013)

    Article  Google Scholar 

  21. Chen, J.Z., Darhuber, A.A., Troian, S.M., Wagner, S.: Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation. Lab Chip 4(5), 473–480 (2004)

    Article  Google Scholar 

  22. Vieira, D., Mata, F., Moita, A.S., Moreira, A.L.N.: Microfluidic prototype of a lab-on-chip device for lung cancer diagnostics. In: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, Porto, Portugal, 21–13 February 2017, pp. 63–68 (2017). https://doi.org/10.5220/0006252700630068. ISBN: 978-989-758-216-5

  23. Cheng, P., Li, D., Boruvka, L., Rotenberg, Y., Neumann, A.W.: Automation of axisymmetric drop shape analysis for measurements of interfacial tensions and contact angles. Colloids Surf. 43(2), 151–167 (1990)

    Article  Google Scholar 

  24. Kietzig, A.M.: Comments on “an essay on contact angle measurements” – an illustration of the respective influence of droplet deposition and measurement parameters. Plasma Proc. Polym. 8, 1003–1009 (2008)

    Article  Google Scholar 

  25. Vieira, D., Moita, A.S., Moreira, A.L.N.: Non-intrusive wettability characterization on complex surfaces using 3D laser scanning confocal fluorescence microscopy. In: 18th International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics, Lisbon (2016)

    Google Scholar 

  26. Chen, L., Bonaccurso, E.: Electrowetting - from statics to dynamics. Adv. Colloid Interface Sci. 210, 2–12 (2014)

    Article  Google Scholar 

  27. Fan, S.-K., Yang, H., Wang, T.-T., Hsu, W.: Asymmetric electrowetting–moving droplets by a square wave. Lab Chip 7(10), 1330–1335 (2007)

    Article  Google Scholar 

  28. Mata, F., Moita, A.S., Kumar, R., Cardoso, S., Prazeres, D.M.F., Moreira, A.L.N.: Effect of surface wettability on the spreading and displacement of biofluid drops in electrowetting. In: Proceedings of ILASS – Europe 2016, 27th Annual Conference on Liquid Atomization and Spray Systems, September 2016, Brighton, UK, 4–7 September 2016 (2016). ISBN 978-1-910172-09-4

    Google Scholar 

  29. Adamo, A., Sharei, A., Adamo, L., Lee, B., Mao, S., Jensen, K.F.: Microfluidics-based assessment of cell deformability. Anal. Chem. 84, 6438–6443 (2012)

    Article  Google Scholar 

  30. Moita, A.S., Herrmann, D., Moreira, A.L.N.: Fluid dynamic and heat transfer processes between solid surfaces and non-Newtonian liquid droplets. Appl. Therm. Eng. 88, 33–46 (2015)

    Article  Google Scholar 

  31. Picknett, R., Bexon, R.: The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61(2), 336–350 (1977)

    Article  Google Scholar 

  32. Sobac, B., Brutin, D.: Triple-line behavior and wettability controlled by nanocoated substrates: influence on sessile drop evaporation. Langmuir 27(24), 14999–15007 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Fundação para a Ciência e a Tecnologia (FCT) for partially financing this research through the project UID/EEA/50009/2013, and for supporting D. Vieira with a fellowship. The work was also partially financed by FCT through the project RECI/EMS-SIS/0147/2012, which also funded the fellowships of F. Mata and J. Pereira. A.S. Moita also acknowledges the contribution of FCT for financing her contract through the IF 2015 recruitment program.

Finally, the authors acknowledge the contribution of Prof. Susana Freitas and her team from INESC-MN for the microfabrication of the test chips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Moita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moita, A.S., Vieira, D., Mata, F., Pereira, J., Moreira, A.L.N. (2018). Microfluidic Devices Integrating Clinical Alternative Diagnostic Techniques Based on Cell Mechanical Properties. In: Peixoto, N., Silveira, M., Ali, H., Maciel, C., van den Broek, E. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2017. Communications in Computer and Information Science, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-94806-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94806-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94805-8

  • Online ISBN: 978-3-319-94806-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics