Skip to main content

Software Verification with ITPs Should Use Binary Code Extraction to Reduce the TCB

(Short Paper)

  • Conference paper
  • First Online:
Interactive Theorem Proving (ITP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10895))

Included in the following conference series:

Abstract

LCF-style provers emphasise that all results are secured by logical inference, and yet their current facilities for code extraction or code generation fall short of this high standard. This paper argues that extraction mechanisms with a small trusted computing base (TCB) ought to be used instead, pointing out that the recent CakeML and Œuf projects show that this is possible in HOL and within reach in Coq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://code.cakeml.org/tree/master/tutorial/solutions.

  2. 2.

    https://github.com/uwplse/oeuf/tree/master/demos/word_freq.

  3. 3.

    No resource limits are assumed since CompCert semantics model infinite memory.

References

  1. Anand, A., Appel, A., Morrisett, G., Paraskevopoulou, Z., Pollack, R., Belanger, O.S., Sozeau, M., Weaver, M.: CertiCoq: A verified compiler for Coq. In: CoqPL (2017)

    Google Scholar 

  2. Barras, B.: Programming and computing in HOL. In: Aagaard, M., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 17–37. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44659-1_2

    Chapter  MATH  Google Scholar 

  3. Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 24–40. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45842-5_2

    Chapter  Google Scholar 

  4. Campbell, B., Stark, I.: Randomised testing of a microprocessor model using SMT-solver state generation. SCP 118, 60–76 (2016)

    Google Scholar 

  5. Delaware, B., Pit-Claudel, C., Gross, J., Chlipala, A.: Fiat: deductive synthesis of abstract data types in a proof assistant. In: POPL, pp. 689–700 (2015)

    Google Scholar 

  6. Fox, A., Myreen, M.O.: A trustworthy monadic formalization of the ARMv7 instruction set architecture. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 243–258. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5_18

    Chapter  Google Scholar 

  7. Fox, A.C.J., Myreen, M.O., Tan, Y.K., Kumar, R.: Verified compilation of CakeML to multiple machine-code targets. In: CPP, pp. 125–137 (2017)

    Google Scholar 

  8. Guéneau, A., Myreen, M.O., Kumar, R., Norrish, M.: Verified characteristic formulae for CakeML. In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 584–610. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54434-1_22

    Chapter  Google Scholar 

  9. Haftmann, F., Nipkow, T.: A code generator framework for Isabelle/HOL. In: TPHOLs (2007)

    Google Scholar 

  10. Harrison, J.: Towards self-verification of HOL light. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 177–191. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771_17

    Chapter  Google Scholar 

  11. Hupel, L., Nipkow, T.: A verified compiler from Isabelle/HOL to CakeML. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 999–1026. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89884-1_35

    Chapter  Google Scholar 

  12. Hurd, J.: The opentheory standard theory library. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-5_14

    Chapter  Google Scholar 

  13. Kästner, D., Leroy, X., Blazy, S., Schommer, B., Schmidt, M., Ferdinand, C.: Closing the gap - the formally verified optimizing compiler CompCert. In: Safety-critical Systems Symposium 2017, SSS 2017, pp. 163–180. Developments in System Safety Engineering: Proceedings of the Twenty-fifth Safety-critical Systems Symposium, CreateSpace, Bristol, United Kingdom, February 2017. https://hal.inria.fr/hal-01399482

  14. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: Self-formalisation of higher-order logic - semantics, soundness, and a verified implementation. JAR 56(3), 221–259 (2016)

    Article  MathSciNet  Google Scholar 

  15. Lammich, P.: Refinement to imperative/HOL. ITP (2015)

    Google Scholar 

  16. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In: 33rd ACM Symposium on Principles of Programming Languages, pp. 42–54. ACM Press (2006)

    Google Scholar 

  17. Leroy, X.: Using coq’s evaluation mechanisms in anger (2015). http://gallium.inria.fr/blog/coq-eval/

  18. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69407-6_39

    Chapter  Google Scholar 

  19. Milner, R.: LCF: a way of doing proofs with a machine. In: Bečvář, J. (ed.) MFCS 1979. LNCS, vol. 74, pp. 146–159. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09526-8_11

    Chapter  Google Scholar 

  20. Mullen, E., Pernsteiner, S., Wilcox, J.R., Tatlock, Z., Grossman, D.: Œuf: minimizing the Coq extraction TCB. In: CPP 2018, pp. 172–185 (2018)

    Google Scholar 

  21. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into pure and stateful ML. JFP 24(2–3), 284–315 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Pitts, A.M.: The HOL System: Logic, 3rd edn. https://hol-theorem-prover.org#doc

  23. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A.C.J., Owens, S., Norrish, M.: A new verified compiler backend for CakeML. In: ICFP, pp. 60–73 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramana Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, R., Mullen, E., Tatlock, Z., Myreen, M.O. (2018). Software Verification with ITPs Should Use Binary Code Extraction to Reduce the TCB. In: Avigad, J., Mahboubi, A. (eds) Interactive Theorem Proving. ITP 2018. Lecture Notes in Computer Science(), vol 10895. Springer, Cham. https://doi.org/10.1007/978-3-319-94821-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94821-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94820-1

  • Online ISBN: 978-3-319-94821-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics