Skip to main content

The Coinductive Formulation of Common Knowledge

  • Conference paper
  • First Online:
Interactive Theorem Proving (ITP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10895))

Included in the following conference series:

Abstract

We study the coinductive formulation of common knowledge in type theory. We formalise both the traditional relational semantics and an operator semantics, similar in form to the epistemic system S5, but at the level of events on possible worlds rather than as a logical derivation system. We have two major new results. Firstly, the operator semantics is equivalent to the relational semantics: we discovered that this requires a new hypothesis of semantic entailment on operators, not known in previous literature. Secondly, the coinductive version of common knowledge is equivalent to the traditional transitive closure on the relational interpretation. All results are formalised in the proof assistants Agda and Coq.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://colmbaston.co.uk/files/Common-Knowledge.agda.

  2. 2.

    http://www.duplavis.com/venanzio/publications/common_knowledge.v.

References

  1. Barwise, J.: Three views of common knowledge. In: Vardi, M.Y. (ed.) Proceedings of the 2nd Conference on Theoretical Aspects of Reasoning about Knowledge, Pacific Grove, CA, March 1988, pp. 365–379. Morgan Kaufmann (1988)

    Google Scholar 

  2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07964-5

    Book  MATH  Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, New York (2001)

    Book  Google Scholar 

  4. Bucheli, S., Kuznets, R., Struder, T.: Two ways to common knowledge. Electron. Notes Theor. Comput. Sci. 262, 83–98 (2010)

    Article  MathSciNet  Google Scholar 

  5. Capretta, V.: General recursion via coinductive types. Log. Methods Comput. Sci. 1(2), 1–18 (2005). https://doi.org/10.2168/LMCS-1(2:1)2005

    Article  MathSciNet  MATH  Google Scholar 

  6. Capretta, V.: Common knowledge as a coinductive modality. In: Barendsen, E., Geuvers, H., Capretta, V., Niqui, M. (eds.) Reflections on Type Theory, Lambda Calculus, and the Mind, pp. 51–61. ICIS, Faculty of Science, Radbout University Nijmegen (2007). Essays Dedicated to Henk Barendregt on the Occasion of his 60th Birthday

    Google Scholar 

  7. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58085-9_72

    Chapter  Google Scholar 

  8. Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  9. Gamow, G., Stern, M.: Puzzle Math. Viking Press, New York (1958)

    MATH  Google Scholar 

  10. Garson, J.: Modal logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University (2016)

    Google Scholar 

  11. Giménez, E.: Codifying guarded definitions with recursive schemes. In: Dybjer, P., Nordström, B., Smith, J. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60579-7_3

    Chapter  Google Scholar 

  12. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)

    MATH  Google Scholar 

  13. Keller, C., Werner, B.: Importing HOL light into Coq. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 307–322. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5_22

    Chapter  Google Scholar 

  14. Kripke, S.A.: A completeness theorem in modal logic. J. Symb. Logic 24(1), 1–14 (1959)

    Article  MathSciNet  Google Scholar 

  15. Lescanne, P.: Common knowledge logic in a higher order proof assistant. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 271–284. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37651-1_11

    Chapter  Google Scholar 

  16. Lewis, C.I., Langford, C.H.: Symbolic Logic. The Century Co., New York (1932)

    MATH  Google Scholar 

  17. Reynolds, J.C.: User-defined types and procedural data structures as complementary approaches to data abstraction. In: Gries, D. (ed.) Programming Methodology. MCS, pp. 309–317. Springer, New York (1978). https://doi.org/10.1007/978-1-4612-6315-9_22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venanzio Capretta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baston, C., Capretta, V. (2018). The Coinductive Formulation of Common Knowledge. In: Avigad, J., Mahboubi, A. (eds) Interactive Theorem Proving. ITP 2018. Lecture Notes in Computer Science(), vol 10895. Springer, Cham. https://doi.org/10.1007/978-3-319-94821-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94821-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94820-1

  • Online ISBN: 978-3-319-94821-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics