Skip to main content

GRTR: Drug-Disease Association Prediction Based on Graph Regularized Transductive Regression on Heterogeneous Network

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10847))

Included in the following conference series:

Abstract

Computational drug repositioning helps to decipher the complex relations among drugs, targets, and diseases at a system level. However, most existing computational methods are biased towards known drugs-disease associations already verified by biological experiments. It is difficult to achieve excellent performance with sparse known drug-disease associations. In this article, we present a graph regularized transductive regression method (GRTR) to predict novel drug-disease associations. The proposed method first constructs a heterogeneous graph consisting of three interlinked sub-graphs including drugs, diseases and targets from multiple sources and adopts preliminary estimation of drug-related disease to initial unknown drug-disease associations for unlabeled drugs. Since the known drug-disease associations are sparse, graph regularized transductive regression is used to score and rank drug-disease associations iteratively. In the computational experiments, the proposed method achieves better performance than others in terms of AUC and AUPR. Moreover, the varying of parameters is shown to verify the importance of preliminary estimation in GRTR. Case studies on several selected drugs further confirm the practicality of our method in discovering potential indications for drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashburn, T.T., Thor, K.B.: Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 3, 673–683 (2004)

    Article  Google Scholar 

  2. Wang, W., Yang, S., Li, J.: Drug target predictions based on heterogeneous graph inference. Biocomputing 2013, pp. 53–64. World scientific, Kohala Coast, Hawaii, USA (2012)

    Google Scholar 

  3. Wang, W., Yang, S., Zhang, X., Li, J.: Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 30(20), 2923–2930 (2014)

    Article  Google Scholar 

  4. Martínez, V., Navarro, C., Cano, C., Fajardo, W., Blanco, A.: DrugNet: network-based drug–disease prioritization by integrating heterogeneous data. Artif. Intell. Med. 63(1), 41–49 (2015)

    Article  Google Scholar 

  5. Luo, H., Wang, J., Li, M., Luo, J., Peng, X., Wu, F.-X., Pan, Y.: Drug repositioning based on comprehensive similarity measures and bi-random walk algorithm. Bioinformatics 32(17), 2664–2671 (2016)

    Article  Google Scholar 

  6. Bleakley, K., Yamanishi, Y.: Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25(18), 2397–2403 (2009)

    Article  Google Scholar 

  7. Mei, J.P., Kwoh, C.K., Yang, P., Li, X.L., Zheng, J.: Drug–target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2), 238–245 (2013)

    Article  Google Scholar 

  8. Gottlieb, A., Stein, G.Y., Ruppin, E., Sharan, R.: PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7(1), 496 (2011)

    Article  Google Scholar 

  9. Yang, J., Li, Z., Fan, X., Cheng, Y.: Drug-disease association and drug-repositioning predictions in complex diseases using causal inference-probabilistic matrix factorization. J. Chem. Inf. Model. 54(9), 2562–2569 (2014)

    Article  Google Scholar 

  10. Dudani, S.A.: The distance-weighted K-nearest-neighbor rule. IEEE Trans. Syst. Man. Cybern. SMC 6(4), 325–327 (1976)

    Article  Google Scholar 

  11. Luo, J., Ding, P., Liang, C., Cao, B., Chen, X.: Collective prediction of disease-associated miRNAs based on transduction learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(6), 1468–1475 (2017)

    Article  Google Scholar 

  12. Wan, M., Ouyang, Y., Kaplan, L., Han, J.: Graph regularized meta-path based transductive regression in heterogeneous information network. In: Proceedings of the 2015 SIAM International Conference on Data Mining 2015, pp. 918–926 (2015)

    Google Scholar 

  13. Xiao, Q., Luo, J., Liang, C., Cai, J., Ding, P.: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations. Bioinformatics 34(2), 239–248 (2018)

    Article  Google Scholar 

  14. Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., Banco, K., Mak, C., Neveu, V., Djoumbou, Y., Eisner, R., Guo, A.C., Wishart, D.S.: DrugBank 3.0: a comprehensive resource for Omics research on drugs. Nucleic Acids Res. 39(suppl_1), D1035–D1041 (2011)

    Article  Google Scholar 

  15. Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., McKusick, V.A.: Online mendelian inheritance in man (OMIM) a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33, D514–D517 (2005)

    Article  Google Scholar 

  16. Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J., Centeno, E., García-García, J., Sanz, F., Furlong, L.I.: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 45(D1), D833–D839 (2017)

    Article  Google Scholar 

  17. Van Driel, M.A., Bruggeman, J., Vriend, G., Brunner, H.G., Leunissen, J.A.M.: A text-mining analysis of the human phenome. Eur. J. Hum. Genet. 14, 535 (2006)

    Article  Google Scholar 

  18. Keshava Prasad, T.S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A., Balakrishnan, L., Marimuthu, A., Banerjee, S., Somanathan, D.S., Sebastian, A., Rani, S., Ray, S., Harrys Kishore, C.J., Kanth, S., Ahmed, M., Kashyap, M.K., Mohmood, R., Ramachandra, Y.L., Krishna, V., Rahiman, B.A., Mohan, S., Ranganathan, P., Ramabadran, S., Chaerkady, R., Pandey, A.: Human protein reference database—2009 update. Nucleic Acids Res. 37(suppl_1), D767–D772 (2009)

    Article  Google Scholar 

  19. Weininger, D.: SMILES, a chemical language and information system. 1. introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–36 (1988)

    Article  Google Scholar 

  20. Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R., Willighagen, E.L.: Recent developments of the chemistry development kit (CDK) - an open-source java library for chemo- and bioinformatics. Curr. Pharm. Des. 12(17), 2111–2120 (2006)

    Article  Google Scholar 

  21. Tanimoto, T.T.: Elementary mathematical theory of classification and prediction. IBM Internal report, pp. 1–10 (1958)

    Google Scholar 

  22. Van Laarhoven, T., Marchiori, E.: Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile. PLoS One 8(6), e66952 (2013)

    Article  Google Scholar 

  23. Zheng, X., Ding, H., Mamitsuka, H., Zhu, S.: Collaborative matrix factorization with multiple similarities for predicting drug-target interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1025–1033. ACM, Chicago, Illinois, USA (2013)

    Google Scholar 

  24. Gönen, M.: Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(18), 2304–2310 (2012)

    Article  Google Scholar 

  25. Liu, Y., Wu, M., Miao, C., Zhao, P., Li, X.-L.: Neighborhood regularized logistic matrix factorization for drug-target interaction prediction. PLoS Comput. Biol. 12(2), e1004760 (2016)

    Article  Google Scholar 

  26. Xia, Z., Wu, L.-Y., Zhou, X., Wong, S.T.: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst. Biol. 4(2), S6 (2010)

    Article  Google Scholar 

  27. Li, G., Luo, J., Xiao, Q., Liang, C., Ding, P., Cao, B.: Predicting MicroRNA-disease associations using network topological similarity based on deepwalk. IEEE Access 5, 24032–24039 (2017)

    Article  Google Scholar 

  28. Coves, M.J., Gomis, R., Goday, A., Casamitjana, R., Rivera, F., Vilardell, E.: Antihypertensive treatment with guanfacine in patients with type II diabetes mellitus. Med Clin (Barc) 88(8), 315–317 (1987)

    Google Scholar 

  29. Ahmad, A.: Carvedilol can replace insulin in the treatment of type 2 diabetes mellitus. J. Diab. Metab. 8(2), (2017)

    Google Scholar 

  30. Davis, A.P., Grondin, C.J., Johnson, R.J., Sciaky, D., King, B.L., McMorran, R., Wiegers, J., Wiegers, T.C., Mattingly, C.J.: The comparative toxicogenomics database: update 2017. Nucleic Acids Res. 45(D1), D972–D978 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work has been supported by the National Natural Science Foundation of China (Grant No. 61572180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Q., Luo, J., Ding, P., Xiao, Q. (2018). GRTR: Drug-Disease Association Prediction Based on Graph Regularized Transductive Regression on Heterogeneous Network. In: Zhang, F., Cai, Z., Skums, P., Zhang, S. (eds) Bioinformatics Research and Applications. ISBRA 2018. Lecture Notes in Computer Science(), vol 10847. Springer, Cham. https://doi.org/10.1007/978-3-319-94968-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94968-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94967-3

  • Online ISBN: 978-3-319-94968-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics