Skip to main content

LSTM Recurrent Neural Networks for Influenza Trends Prediction

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10847))

Included in the following conference series:

  • 2013 Accesses

Abstract

Influenza-like illness (ILI) is an acute respiratory infection causes substantial mortality and morbidity. Predict Influenza trends and response to a health disease rapidly is crucial to diminish the loss of life. In this paper, we employ the long short term memory (LSTM) recurrent neural networks to forecast the influenza trends. We are the first one to use multiple and novel data sources including virologic surveillance, influenza geographic spread, Google trends, climate and air pollution to predict influenza trends. Moreover, We find there are several environmental and climatic factors have the significant correlation with ILI rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lofgren, E., Fefferman, N.H., Naumov, Y.N., Gorski, J., Naumova, E.N.: Influenza seasonality: underlying causes and modeling theories. J. Virol. 81(11), 5429–5436 (2007)

    Article  Google Scholar 

  2. Mcneil, D.G.: This Flu Season Is the Worst in Nearly a Decade (2018). https://www.nytimes.com/2018/01/26/health/flu-rates-deaths.html. Accessed 13 Mar 2018

  3. Centers for Disease Control and Prevention: Situation Update: Summary of Weekly FluView Report (2018). https://www.cdc.gov/flu/weekly/summary.htm. Accessed 5 Apr 2018

  4. Han, M., Yan, M., Li, J., Ji, S., Li, Y.: Generating uncertain networks based on historical network snapshots. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 747–758. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38768-5_68

    Chapter  Google Scholar 

  5. O’Connor, F.: Google Flu Trends calls out sick, indefinitely (2015). https://www.pcworld.com/article/2974153/websites/google-flu-trends-calls-out-sick-indefinitely.html. Accessed 13 Mar 2018

  6. Dugas, A.F., Hsieh, Y.H., Levin, S.R., Pines, J.M., Mareiniss, D.P., Mohareb, A., Gaydos, C.A., Perl, T.M., Rothman, R.E.: Google flu trends: correlation with emergency department influenza rates and crowding metrics. Clin. Infect. Dis. 54(4), 463–469 (2012)

    Article  Google Scholar 

  7. Santillana, M., Nguyen, A.T., Dredze, M., Paul, M.J., Nsoesie, E.O., Brownstein, J.S.: Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput. Biol. 11(10), e1004513 (2015)

    Article  Google Scholar 

  8. Han, M., Yan, M., Cai, Z., Li, Y.: An exploration of broader influence maximization in timeliness networks with opportunistic selection. J. Netw. Comput. Appl. 63, 39–49 (2016)

    Article  Google Scholar 

  9. Albinali, H., Han, M., Wang, J., Gao, H., Li, Y.: The roles of social network mavens. In: 2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks, MSN, pp. 1–8. IEEE (2016)

    Google Scholar 

  10. Guo, X., Liu, B., Chen, L., Chen, G., Pan, Y., Zhang, J.: Bayesian inference for functional dynamics exploring in fMRI data. Comput. Math. Methods Med. 2016, 1–9 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Dietterich, T.G.: Machine learning for sequential data: a review. In: Caelli, T., Amin, A., Duin, R.P.W., de Ridder, D., Kamel, M. (eds.) SSPR /SPR 2002. LNCS, vol. 2396, pp. 15–30. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-70659-3_2

    Chapter  Google Scholar 

  12. Georgia Health News: Georgia’s flu death toll now at 51; season’s peak is still ahead (online)

    Google Scholar 

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  14. Azzouni, A., Pujolle, G.: A long short-term memory recurrent neural network framework for network traffic matrix prediction. arXiv preprint arXiv:1705.05690 (2017)

  15. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Han, M., Zhou, Y., Wang, Y. (2018). LSTM Recurrent Neural Networks for Influenza Trends Prediction. In: Zhang, F., Cai, Z., Skums, P., Zhang, S. (eds) Bioinformatics Research and Applications. ISBRA 2018. Lecture Notes in Computer Science(), vol 10847. Springer, Cham. https://doi.org/10.1007/978-3-319-94968-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94968-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94967-3

  • Online ISBN: 978-3-319-94968-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics